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Deep holography
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Abstract

With the explosive growth of mathematical optimization and computing hardware, deep neural networks (DNN)
have become tremendously powerful tools to solve many challenging problems in various fields, ranging from
decision making to computational imaging and holography. In this manuscript, | focus on the prosperous
interactions between DNN and holography. On the one hand, DNN has been demonstrated to be in particular
proficient for holographic reconstruction and computer-generated holography almost in every aspect. On the
other hand, holography is an enabling tool for the optical implementation of DNN the other way around owing to
the capability of interconnection and light speed processing in parallel. The purpose of this article is to give a
comprehensive literature review on the recent progress of deep holography, an emerging interdisciplinary research
field that is mutually inspired by holography and DNN. | first give a brief overview of the basic theory and
architectures of DNN, and then discuss some of the most important progresses of deep holography. I hope that the
present unified exposition will stimulate further development in this promising and exciting field of research.
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Introduction

Since the pioneering works by Gabor', Leith and
Upatnieks™ and Denisyuk’, holography has become an
important and widespread technique that has found
applications in various fields of optical engineering,
ranging from optical imaging and microscopy™,
metrology™’ to three-dimensional (3D) display™’.

Physically, holography is a two-stage process: the
recording, and the reconstruction,
Nowadays, both these processes can be performed either
optically or digitally. We refer the kind of holography that

of a wavefront.

the recording is performed optically by a digital camera
while the reconstruction is digitally as digital holography
(DH)”". In contrast, the kind of holography that the
recording (synthesis) is performed digitally while the
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reconstruction is optically is called computer-generated
holography (CGH)"".

For the optical recording of a wavefront, one would
prefer a light source with a certain level of coherence'™"
particular, for off-axis holography’, because the lack of
coherent light sources only allows interference patterns to
be formed in the vicinity of the optical axis. As a result,
only the hologram of a small object can be recorded by
using an in-line setup. Furthermore, the reconstructed
image is blurred owing to the superposition of a fuzzy
defocused twin image, which was then difficult to
effectively eliminate”, although many efforts have been
elaborately made" in the history of holography. Thanks to
the invention of DH'"", coherence is not a fundamental
limit for contemporary holographic imaging techniques any
more. Light sources with short-coherence'™’ and even
incoherence' can be used for holographic recording.

One of the great advantages of DH is the capability of
numerical reconstruction of a digitally recorded hologram.

,in
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In this way, the fuzzy defocused twin image superposing
with the in-focus image can be removed numerically.
Conventional this can be done by physics-based
approaches” ™, phase-retrieval approaches’ ', or more
generalized inverse problem approaches’™ .

With the recent prosperous development of a new class
of optimization tools called deep neural networks
(DNN)"*, we have witnessed the emergence of a new
paradigm of solving inverse problems in various fields of
optics and photonics by using DNN“. This shift of
paradigm also has significant influence to the field of
DH"”" in many aspects. Indeed, in additional to
holographic reconstruction” ', DNN has also been
proposed for phase aberration compensation™, focus
prediction”™, extension of depth-of-field”, speckle
reduction” ™,  resolution enhancement”, and phase
unwrapping’ ", just to name a few.

DNN has also been used for the design of CGH™™"', a
technique whose invention was mainly attributed to
Lohmann's pioneering works™". As suggested by the
name, the objective of CGH is to artificially encode a target
object within a space volume into a hologram called
computer-generated hologram so that it can reconstruct the
desired wavefront within that space volume under the
illumination of a proper coherent light. The optically
reconstructed wavefront can be a perfect reference of an
optical surface for holographic testing”™ or a 3D
object/scene for holographic display”’. Conventional
approaches for the encoding of a computer-generated
hologram are either to take it as an optimization problem,
which can be solved by iterative phase-retrieval
algorithms™**"", or non-iterative interference-specific or
diffraction-specific algorithms™". Although it can be sped
up by using the trick of look-up table”, the use of DNN
still promises the most dramatic increment in terms of
calculation efficiency’"'.

Holography has been used the other way around, i.e., as
a way to implement optical neural networks (ONN), in
particular, the Hopfield model”” and fully-connected
neural networks” ™. With the development of optical
material manufacturing technologies such as 3D printing
and metamaterials, multi-layers fully-connected neural
networks can be implemented in a modern fashion™”.

These recent progresses suggest that the distinct fields of
holography and deep learning have incorporated into each
other, forming a new interdisciplinary field, the name of
which can be coined as deep holography. In this article, 1
will give a comprehensive literature review of this
emerging but exciting field. The structure of this article is
organized as follows: In section 1 I will first give a concise
introduction to deep neural networks. Then I will discuss in
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detail how DNN is used to solve various problems in
holography, and vice versa, in section 2 and section 3,
respectively.  Finally, the perspective of further
development will be discussed in Sec. 4.

Deep Neural Networks: A Concise Introduction
DNN can be regarded as a category of machine learning
algorithms that are designed to extract information from
raw data and represent it in some sort of model”.
Specifically, a neural network (NN) is built on a collection
of connected units called artificial neurons, which are
typically organized in layers, an idea somehow inspired by
the biological neuron in the mammalian brain. As
schematically shown in Fig. la, a modern NN consists of
three kinds of layers: the input layer, the output layer, and
the hidden layers. The input layer usually represents the
signal to be processed and the output layer represents the
expected result that one wishes the network to produce. So
the widths (P), i.e., the number of neurons, of these two
layers are task-specific. Data processing is mainly
performed by the hidden layers that lay between the input
and the output layers. Each successive hidden layer uses
the outputs from its upstream layers as its input, processes
it, and then passes the result to a downstream layer. In this
manuscript, we use the digit /=1,...,L to enumerate the
layers, where [, is called the depth of the NN. A neural
network is deep if it has many layers. The depth of modern
deep neural networks ranges from 8 layers in AlexNet' to
152 layers in ResNet'"', which has the potential to increase
to more than 1000 layers'”. The requirement of
computation resource dramatically increases along with the
up-scaling of the DNN, i.e., the number of hidden layers
and hidden neurons. For example, a neural network used
for DH have a depth up to 20 layers in a typical proof-of-
principle demonstration™. It usually takes tens of hours to
train on a training set consisting of about thousands of
holograms with a modern graphic workstation.
Unfortunately, given a problem to be solved by DNN, it is
not trivial at all to determine how deep it should be'"'".
Hornik has proved that, for any continuous function
y = f(x), where x and y are data (vectors) in the Euclidean
or non-Euclidean space, there is always an NN, no matter
how shallow it is, that can approximate the function f with
an infinitesimal error, i.e., NN{x} — y, provided that it is
sufficiently wide'”. Practically, however, one still needs a
good rule of thumb to configure the number of layers (L)
and the numbers of neurons in each layer (P?®). It is
commonly believed that the performance of DNN is
heavily dependent on the network architecture, which is
defined in part by L, P?, and the types of connections
between layers, the quality of the raw data, and the
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Fig. 1 A conceptual architecture of DNN.
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technique to train the network on them.

Perhaps the most well-known and easiest to understand
DNN is the so-called feedforward neural networks. The
architectures of all the other DNNs that are widely used in
holography’ ~*****™ are developed on the base of it. Thus
it is worthy of discussing it in detail.

Feedforward neural networks

As shown in Fig. 1a, a feedforward neural network, or
multilayer perceptron (MLP) has one input layer, one
output layer, and one or many hidden layers. Each layer
may have a different number of neurons called the
perceptron. The connections between the neurons in the
layers form an acyclic graph'”. The objective of a
feedforward neural network is to optimize an NN model
Jxn that approximates a continuous function f, which maps
x in the input space to y in the output space through a set
of parameters O that are learned from the raw data.

The artificial neuron

The basic unit in a DNN is the artificial neuron. As
shown in Fig. 1b, an artificial neuron simply calculates the
weighted sum of all the quantities outputted from the
neurons in its immediately upstream layer, and passes the
resulting quantities to the neurons in the next layer. Let us
take the j™ neuron at the / layer for example, the input to
this neuron can be written as'"*"”

,
o _ 0 a-1) 0
a; = Z Wyizp tD; (1)

p=1

where z{~" is the output from the p™ neuron at the (/- 1)"

()
Pj

neurons, and b;” is a bias. The values of the network

layer, w " is the weighting factor that connects these two
parameters w;l;. and b;') are to be learned from a set of raw
data called the training set. One can think of their values as
the connection strengths between the two neurons. The j*
neuron at the [ layer then can be activated if the quantity
ay) is significant (for example, > 0), and this value is
passed on to the next layer. Otherwise, this neuron is dead,
and should have no contribution to the neurons in the
downstream layer. Analogously, one can think of the input
signal being an electric current that flows through the
network from the input layer to the output layer. Each
neuron in the hidden layers acts like a gate that controls the
amount of incoming current that is allowed to pass through
to the downstream neurons. The “gate” function in a NN is
not just a simple “0” and “l1” binary function as in the
digital electric circuit, but has a form of an activation
function. Fig. lc plots the Rectified Linear Unit (ReLU),
which is one of the most important activation function
nowadays used in DNN. It is defined as”

z=o0(a) £ max(0,a) 2)

ReLU is widely employed in most of the modern neural
network architectures, as it has a number of benefits over
other old-fashioned activation functions such as Sigmoid
and Tanh": (a) It can be applied to minimize the interaction
effects; (b) It is simple and easy to compute, and thus leads
to an increment of efficiency in the network training; (c) It
helps avoid the vanishing gradient problem; and (d) It is
sparsely activated because the output is zero for all
negative inputs. However, ReLU sometimes dies, referring
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to the situation that an neuron has a zero activation value.
This dying ReLU issue causes slow-learning because the
optimization algorithm is gradient-based and does not
adjust the unit weights if the gradient is zero in an inactive
neuron. Thus, extensions and alternatives such as Leaky
ReLU (or LReLU for short), exponential linear unit (ELU),
and parametric ReLU (PReLU) are highly desirable when
it happens'”’.

The width of the input layer is the number of pixels of
the image one wishes the network to process. The width of
the output layer is usually task-dependent. For example, in
the applications of holographic reconstruction” ", the
width of the output layer is the same as the input layer.
Whereas in the application of holographic autofocusing™ %,
the width of the output layer is simply 1, which gives the
focusing distance. The width of each hidden layer is
dependent on task in hand and the choice of the network
architecture. Indeed, the width of the I layer and that of
the (I—1)™ layer may not be the same in most of the cases.
Thus, what Eq. 1 implies is that it transforms a P-
dimensional signal to a J-dimensional space. This can be
more clearly seen by writing Eq. 1 in the form of

a? = W(l)z(l—l) +p® (3)

The substitution of Eq. 1 into Eq. 2 yields the output
from the / layer

20 = f0 (z("”;w“), b<’)) — o-(a(’)) 4)

where f@ is defined as the transform from the (/- 1) layer
to the I™ layer. From a more theoretical point of view, deep
learning relies on this kind of mapping between spaces of
different dimensions'”.

The feedforward neural network model
Now we can mathematically express the feedforward
neural network model as

y= 6<W<L>o-(. . .o-(W(z)o-(W“)z(O) + b“))
+ b<2>)+...)+b“>) (5)

where z© £ x is the input signal, and §(-), the activation
function at the output layer. It is not necessary to be the
ReLU function as in the hidden layer. For example, it takes
the form of a softmax function

explz;]
Ziciexplz]
for autofocusing in holography™ .

The set of network parameters ® then can be defined as
Q= {wh pd WD pD}  Then one can write the
feedforward NN model in Eq. 5 in a more compact form

y=fPoft o o f? = fin(x;0) (7

6(z) = Q)
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This simply tells the fact that a feedforward NN model
Jxn 1s to approximate a function f and map the input x to
the output y through a neural network specified by the set
of parameters ©.

The training of the network

Although the universal approximation theorem'”
guarantees that a feasible NN model fyy exists for an
arbitrary given training set, Eq. 7 does not provide any clue
to its architecture and weight configuration. In terms of
DNN, the network architecture is defined on a set of
hyperparameters such as the depth 7, and the width p® of
each layer that one needs to set up, mostly by a rule of
thumb. Many efforts have been made to clarify this point,
but it is still an open question'”*'"". The weighing factors W
and b are to be determined by a learning process, which
consists of repeated steps of optimal adjustment of the
parameters in ©.

For the supervised learning methods that are mainly used
in the community of holography, the parameters in ® are
learned from a large set of labeled data S = {(x;, y)IE . It
consists of many pairs of (x;,y;) with x; being the signal
(such as a hologram) one wishes the network to process,
and y,, the associated correct result (the reconstructed
object, the focusing distance, etc.) that are already known.
Thus it is possible to compare the calculated output,
denoted by §;, with the correct answer y,, and evaluate
their difference for each neuron at the output layer. This
leads one to define the loss function L[ fyn(x;®),y]. Thus
one can then formulate the NN learning as the optimization
of the parameters in ® so as to minimize the loss function

argénin.ﬁ[fNN(x;(@),y] 3

An instinct philosophy to train a neural network is to
adjust the values of W® and b and see if the loss function
decreases or not. An efficient and straightforward way to
do this is to evaluate the gradient of the loss function with
respect to ®. Note that DNN has a layered architecture, one
needs to calculate the gradient of the loss function with
respect to the weights and bias one by one from the output
layer back to the input layer. This can be done by the
algorithm of back propagation'”.

To develop the error back propagation model, let us first
define the loss function of layer /

LU) =Lo f(L) Of(Lfl) o... c>f(l) (9)

Then the back gradient of the loss function with respect
to the parameters W® and b at layer / can be formulated

110

by using the recurrence relation

oL aLe o
aWDh — §fh GWo

(10)
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LO  GLHY 9o

30 = 870 360

(11)

Lo GLEy fo
870D~ gfh §ziD

(12)

From the recurrence relations Eq. 10 — Eq. 12, one can
derive 0L/W® and 6.L/b" using the chain rule'"'. Then the
architectural parameters at layer / can be updated using the
strategy of gradient descent' "’

oL
(O] (O]

oL
U] U]

where 71 is the learning rate, or step size, in the gradient
descent method. It determines how many the parameters
should be adjusted each time. The convergence will not get
to the right place if the learning rate is either too large or
too small. Thus an ideal 5 value is desirable in training a
neural network. However, the determination of its value is
yet a comprehensive theoretical study'’. Empirically,
setting the learning rate 7 = 10~* should work pretty well
for many applications in holography™”. But is can be
adjusted during the iteration process as well™".

The number of labeled data pairs (K) in the training set
should be sufficiently large in order for the network to
learn the statistics of the data. Indeed, it can easily go up to
tens of thousands in a typical DNN for holographic
reconstruction”. The calculation of the error back
propagation is then extremely time-consuming. Thus a
practical and intuitive way to evaluate the error is to
randomly select a small batch of labeled data in each epoch
(which means a period of time) and calculate the gradients
of the loss function, and use them to update ®. This is a
trick  called (SGD).
Furthermore, it is also possible to employ the method of
adaptive moment estimation'”, or Adam for short, that adds
a momentum term to speed up the learning process, and
adaptively shrinks the learning rate along with the progress
of the learning process to achieve faster convergence.

As apparently suggested by Eq. 10 — Eq. 12, the specific
form of the loss function plays a crucial role in the
optimization process and the explicit setting of ® that it
converges to'". Thus
appropriate loss function depending on the problem in
hand”. Some of the widely adopted loss functions in DNN
include the averaged mean squared error (MSE) loss, the
L,, or mean absolute error (MAE), loss, and the cross
entropy loss.The MSE loss is one of the defined as

stochastic ~ gradient descent

one should choose the most
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L fin(x;0),y] = Egllyr — fan (X ®)||2

1 K
=;;||yk—fw<xk;®)nz (15)

where the subscript k denotes the k™ pair of data in the
training set, and ||-|* denotes the Euclidean distance
between the correct output y, and the calculated output
Vi = fun(xr; ®) with respect to a setting of ®. The MSE
loss, and the root of it, i.e., the root mean square error
(RMSE) loss, are widely used to train DNN for
holographic reconstruction™*. Alternatively, the MAE loss
is defined as'"”

1 K
Lifw@:0)31= 2 > Iy~ fn@a®) - (16)
k=1

where ||-|| is the L; norm. And the cross entropy loss is
defined as the inner product of y, and

1 &
L fn(x;0),y] = X Zyk'longN(xk;®) (17)

k=1

When more than one criterion are concerned, one can
defined a combined loss function that is a weighted sum of
several parts™'"°. This is in particular useful for holography
because of the complex nature of an optical wavefront. For
example, if one wishes to measure both the amplitude and
phase of the reconstructed wavefront, he/she can define a
loss function as L = Ly, + @Lnase, a linear combination of
the errors in both the amplitude and phase™. Alternatively,
one can also define a complex loss function”.

I will show later on that a loss function does not have to
define on the training set ®, but on a physical model. That
is, L{H[fxn(¥)],¥}, where H is a forward physical model
that maps the object space to the measured image space™.

When the training process is completed, the performance
of the neural network should be validated by using a set of
data that have not been used for training in any way. The
performance is usually evaluated by using the test error
Ly = Eg|lym, f(x,,;®)|*. This metric also quantifies the
ability of generalization of the trained network™.

The Convolutional Neural Networks

In the feedforward NN model described by Eq. 7, the
neurons in neighboring layers are typically fully connected
with the weight and bias parameters independent of each
other. Although DNN has been employed to solve many
problems in computational imaging'’ ", ranging from
ghost imaging to imaging through scatterers, there are
several issues with it. First, as there are too many
parameters to train, it often has the issue of overfitting.
Second, it requires a large memory footprint to temporally
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store the parameter set ® and thus the training usually takes
a lot of time. Third, it ignores the intrinsic structure that the
data to be processed may have. This is in particular
important for the tasks of speech and image processing.
Images, in particular, have significant intrinsic structures.
For example, neighboring pixels may have similar values;
the image may be shift-invariant, etc. It is therefore highly
demanded to have units in a neural network to learn these
features.

Inspired by the physiological mechanism of visual
cortexes'”, a convolutional neural network (CNN) also has
a layered structure. Indeed, it consists of an input layer, an
output layer and multiple hidden layers. But the hidden
layers in CNN do not have to be fully connected. Instead,
each convolutional layer in CNN has a filter called kernel
function, denoted by w, to convolve with the incoming data
z from an upstream layer, and extract a feature map of it at
a certain level of abstraction. Instead of Eq. 1, the
calculated feature map a(i, j) can be mathematically written

42
as

ali,j) = @xw)i j) = ), Y dmmwii—m, j=n) (18)

where (i,j) and (m,n) stand for the neurons at two
neighboring layers. Equation (18) means that the elements
of the kernel function, w(m,n), will apply to many neurons
in the layer. In other words, all those neurons share the
weighting parameters in contrast to the case of DNN that
each neuron is tied to a unique weight. This parameter
sharing mechanism guarantees that the network just needs
to optimize a much smaller set of parameters for each
layer. It is because of this reason that the requirement for
memory footprint and computation efficiency can be
significantly reduced in comparison to DNN”. Indeed, the
size of the kernel function is typically from 3x3 to 5x5
for many applications in holography™, which is very
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small in comparison to that of a layer.

Note that a natural image has various features in one
level of abstraction. For example, an image of a human
face may contain edges with different orientations. Thus it
is preferable to use multiple filters in one layer to extract
all these edge orientation features, generating multiple
feature maps. Usually these feature maps are arranged in a
three-dimensional volume as they are to pass to a
downstream layer. Denoting the width A7 and height N as
the transverse size of each feature map, and the depth U as
the number of feature maps, the value of the (i, j)™ pixel in
the ™ feature map in the [ convolutional layer (I > 2) can
be written as

DYFRER —_ gl -1). ) )
a® (i, j;v) —f”(z( ),w“,b(’(”)

M-1 N-1

xz("”(i+m,j+n;u)+b(’)(t)) (19)

where b?(f) is a bias term for the v" feature map in the /
layer, u denotes the u™ feature map in the (I—1)" layer, w
is the corresponding kernel function, and z/~" is the output
from the upstream layer. One can clearly see from Eq. 19
that the convolution algorithm is actually implemented by
cross-correlation in CNN, in contrast to what we are
familiar with in terms of Fourier optics'”'. However, this
does not change the resulting feature maps except their
indices. We adapt this custom and call both Eq. 18 and Eq.
19 convolution.

The numerical calculation of the convolution in Eq. 19
requires moving the filter across spatial dimensions of the
input data z"". In conventional digital image processing
and numerical implementation of convolution in optics'”,
the filter is moved one pixel to the right and one pixel to

The hidden layers

The input layer
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%

Fig. 2 A conceptual architecture of CNN.
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the bottom at a time. In the language of deep learning, this
means that the stride is equal to 1. But it is not necessary to
be like this in CNN. Indeed, the stride of 2 is commonly
used. More specifically, for an input image of size N XN
and a kernel of size M x M with stride = k, the resulting
output will be of size [(N —M)/k+ 11X [(N-M)/k+1].

The output feature maps a”(i,j;r) are then passed
through an activation function, usually the ReLU function
defined by Eq. 2, to a pooling layer, which performs
nonlinear down-sampling. This can be done in many ways.
But the one that is most commonly used and has good
performance is maxpooling™, which partitions each
incoming feature map into a set of non-overlapping
rectangle regions by using a filter with the size of k X «
and outputs the maximum value of each region. Thus, the
spatial size of the resulting feature map is reduced by a
factor of x. As a consequence, the number of parameters,
memory footprint and amount of computation in the
network can be reduced accordingly. The reduction of
network parameters will of course improve the situation of
overfitting. Maxpooling also guarantees that the most
significant features and their rough location relative to the
other features can be passed to the downstream layer.

In a typical CNN model, the convolutional layer, the
ReLU layer and the pooling layer are arranged in sequence,
forming the basic building block”. Usually several
“convolution-ReLU-pooling ” blocks are arranged in
cascade, each of which performs the same set of operations
as described above. In the end, only the most significant
features (activated features) of the input data can be
retained after the data stream passes through several
blocks. In the applications of image recognition'”’ and
focused distance  determination in  holographic
reconstruction”, a flatten layer is usually used to reshape
the three-dimensional into a one-
dimensional vector, which is then sent to fully-connected
layer described by Eq. 1 for further analysis. In the
applications of holographic reconstruction’ ™ and
aberration compensation”, however, one wishes to
reconstruct the object function and need a path to transform
the activated feature maps back to the image pixels. This
can be implemented by adding a deconvolutional
network “*'*, which consists of a series of unpooling
(reverse  maxpooling), rectifying, and transpose
convolution operations that upsample the feature maps
many times until it reaches the size of the input hologram.
The elegant U-Net'” operates in a similar way, except that
the unpooling layers are replaced by ‘“up-convolution ”
layers.

A CNN model can be trained in the way as we described
in Sec.. It involves the calculation of the gradient of the

feature volume
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loss function with respect to the weight of every kernel
function, which is then used to update the weight, usually
according to the Adam method'”. The back propagation
model is a little different. One can refer to Ref. 42 for more
details.

When the network goes deeper, it becomes very difficult
to train because of the problems such as gradient vanishing
and exploding’. He et al. proposed the residual neural
network, or ResNet for short, to address this problem'”.
The most distinguished feature of ResNet is that two
distanced layers can be connected directly through the
short-cut. That says, the signal goes through a series of
“convolution-ReLU-convolution ” blocks instead of the
“convolution-ReLU-maxpooling” in CNN. The result is
then added to the input of this block. Thus, the forward
propagation model can be formulated as'”'

20 = f0 ( f(l_l)(ZU_Z);W([_z'l_l),b(l_l)); W“‘l’”,b(’)) +702

(20)
where f© is the CNN forward propagation function
defined in Eq. 19, W% is the weight that connects layer
[—1 and layer /. It is clearly seen that the input of layer
1-2, 2%, is directly connected to the /™ layer. As it does
not need to undergo the nonlinear transform, the gradient
will flow easily during back propagation.

Nowadays, a common and practical strategy to design a
DNN to solve holographic problems is to take U-Net as a
backbone, and incorporate into it the ResNet ingredient of
short-cuts™***"""**"* " The U-Net architecture can also be
extended to allow the extraction of features of different size
by introducing multiple channels in the down-sampling
convolutional ~ blocks™ ™™ Another interesting
extension of U-Net is the so-called U-Net++'"", which has a
pyramid shape architecture. It essentially consists of an
encoder and a decoder that are connected through a series
of nested, dense skip pathways, bridging the semantic gap
between the feature maps of the encoder and the decoder
prior to fusion'”.

The Generative adversarial networks

Generative adversarial networks (GAN's) are NN's that
learn to generate synthetic instances of data with the same
statistical characteristics as the training data"’. GAN is able
to keep a parameter count significantly smaller than other
methods with respect to the amount of data used to train
the network. It the field of holography, GAN has been used
for wavefront reconstruction’”"””'", enhancement” and
image classification. It can be trained on paired data'”,
unpaired data””"" or even unsupervisely'*’ in some cases.

Architecturally, GAN 1is constituted of two neural
networks, one of which is called the generator, and the
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other, the discriminator. As shown in Fig. 3, the two
networks are pitted one against the other (and thus
“adversarial”) in order to generate new, synthetic instances
of data that can pass for real data. Explicitly, the generator

124,125

G is a deconvolutional neural networ that generates
new images as real as possible from a given noise variable
input z, whereas the discriminator D is a CNN-based
classifier that estimates the probability of a generated
image and determines if it looks like a real image from the
training set or not.

To proceed, let us denote the probability distribution of
the input variable z as p,, that of the generator over data x
as p,, and that of the discriminator over real sample x as
p,. The purpose of GAN is to make sure that the
discriminator's decisions over the real data are accurate by
maximizing E.., yl[logD(x)], while the discriminator
outputs a probability D(G(z)) that is close to zero by
maximizing E,., ., [log(1 — D(G(z)))] for a given generative
data instance G(z), where z ~ p.(2).

Thus, one can see that D and G are actually playing a
minimax game so that the objective is to optimize the
following loss function'”

mgn max L(D,G) =E..,,ullog D(x)]
+E.., ollog(1 - D(G(2)))]

=E.., «v[log D(x)]
+E.p,wllog(l - D(x)] 21

where
L(G.D) = | p(x)1ogl D]+ p,( logl = D(x)ldx (22)

Note that for any (a,b) € R,\{0,0},
y — alog(y) + blog(1 —y) achieves its maximum in [0, 1] at
y=a/(a+b). It is then straightforward to obtain the best
value of the discriminator'™

the function

Training set

Correct?

Latent space

Fine tune training

Fake images

Noise

Fig. 3 A conceptual architecture of GAN.

Page 8 of 23

. - pr(x)
D= =

Once the generator is trained to its optimal, p, = p,.
Thus D*(x)=1/2, and the loss function L(G,D*)=
—2log?2.

GAN can be trained by using SGD-like algorithm such
as Adam'” as in the case of CNN. But the discriminator
and the generator should be trained against a static
adversary'’'. That is, one should hold the generator values
constant while training the discriminator, and vice versa.

There are several adaptations of GAN, among which the
cycle-GAN'” and conditional GAN (cGAN)'* have been
adopted for holography. Different from GAN, the purpose
of the generator in cycle-GAN is not to generate an image
from noise, but to take a hologram as its input and extract
the most significant features via a series of convolutional
layers, and then build a reconstructed image of the same
size as the input hologram from these transformed features
using a series of transpose convolutional layers. The most
distinguished idea behind cycle-GAN is the introduction of
a cycle consistency loss

-Ecycle(G’ F) = Ez~p,(z)[||F(G(Z)) - Z”]
+E.p,wllIF(G(x)) - ]

€[0,1] (23)

24

that imposes a constrain to the model. The generator G
generates an object image x from a hologram z, and F
generates the hologram z of x. Thus, the total loss function
can be defined as

L(G,F,D,,D,) = LGAN\ + LGAN, + —Lcyc]e (25)

where D, and D. are the discriminators of x and z,
respectively, and Lgan (G,D,,x,2) and Lgan.(G, D, x,2),
defined by Eq. 22, are the conventional GAN loss of the
objects x and holograms z in the training set. It is clearly
seen that x and z show up independently in each term of
L(G,F,D,,D.), meaning that they do not need to pair up in
the training set.

The generation of training data

The training of DNN usually requires a large set of data,
the size of which is typically ranging from a few thousands
to tens of thousands in a typical proof-of-concept
demonstration. The amount of labeled data is far less than
that is used for deep learning applications in other
communities such as computer vision. For example,
AlexNet'” was trained on a set composed of 1.2 million
images.

In the case of supervised training the data used for
training should be labeled so that every input data x, is
paired up with a corresponding ground truth data y,. But it
is not necessary to do so in some other cases’'" like
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unsupervised training. Optical acquisition of these data
usually takes the most time, and requires the optical
instruments in use to be stable during the long period.
Otherwise, the data pairs cannot be registered well enough
to match each other’. However, since holography is
extremely sensitive to environment vibration, it is
unavoidable to capture such vibration in the holograms
during the time of acquisition (usually tens of hours
depending on the number of holograms required to train
the DNN), resulting in the instability of the fringe patterns.
However, we have shown that DNN can be well trained on
these “noisy” data™.

An alternative and more flexible way to generate the
training data is to use a numerical simulator provided that
the physical system that describes the data link from the
source to the detector can be accurately modeled. For
example, this strategy has been applied to phase
unwrapping” as well as speckle removal™”, ghost
imaging”', STORM'**'"* and diffraction tomography'*.

The raw data are mainly taken from MNIST'’, Faces-
LFW' and CelebAMask-HQ'”, which are publicly
available. In most of the proof-of-concept experiments, a
spatial light modulator (SLM) is used to display these
images in order to form the holograms of them by using a
standard holographic system. However, in most of the
practical applications of holography, it is not the 2D hand-
written digits, English letters'"’, or 2D human faces**'* that
are of interest. Thus, DNN trained on these data sets is
difficult to be generalized™ to cope with most of the
objects in the real world.

Recently, Ulyanov et al. have shown that the structure of
a generator network can capture a great deal of low-level
image statistics prior to any learning”'. This can be
generalized to a more general DNN such as the U-Net by
incorporating a physical model into it, resulting in an
untrained neural network that does not require any data to
train”. It can be used to reconstruct the holograms of
realistic objects. Indeed, over the past year, untrained DNN
has been applied by to solve problems of holographic
reconstruction™ ", phase unwrapping’”, phase
microscopy'”, diffraction tomography'™ and imaging™,
and even ghost imaging'”. I will discuss it in more detail
later on.

Physics-informed DNN

So far I have introduced several important DNN models
that are widely used in optics and holography. Indeed,
DNN has been shown to outperform conventional physics-
based approaches. For example, DNN allows twin-image-
free reconstruction from a single-shot in-line digital
holography™. A major reason for the success is that DNN,
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given enough data, can learn feature hierarchies with
features from higher levels of the hierarchy formed by the
composition of lower level features™ even explicit
formulation of a system's exact physical nature is
impossible owing to its complexity' ™',

However, it is also well-known that DNN has a black-
box issue'”’: the information stored in DNN is represented
by a set of weights and connections that provides no direct
clues to how the task is performed or what the relationship
is between inputs and outputs'”’. When it is used to solve
real-world physical problems, DNN has met with limited
success due to a number of reasons: First, DNN requires a
large amount of labeled data for training, which is rarely
available in real application settings'”’. As discussed above,
for most of the leaning-based methods for optical imaging
and holography, an SLM is required to display the ground-
truths. Frequently, the publicly available dataset such as the
MNIST"" database is used for demonstration. But this is
hard to generalize to real-world samples owing to the issue
that DNN models can only capture relationships in the
available training data'. Second, DNN models often
produce physically inconsistent results'” when violating
fundamental  constraints.  Third, the
unexplainable''.

Thus, it is highly desirable to take the benefits of both
DNN models and physics models, and develop physics-
informed or physics-guided DNN'*"'®, Barbastathis and
coworkers” have concluded three different ways to
incorporate a physical model into DNN, namely, recurrent
physics-informed DNN, cascaded physics-informed DNN,
and single-pass physics-informed DNN. In contrast, Ba and
coworkers have concluded four different ways'®: physical
fusion, residual physics, physical regularization, and
embedded physics. One can see that both these two ways
of classification are somewhat equivalent.

According to Ba et al.'™, physical fusion is the most
straightforward way. It feeds directly the solution from a
physics model as (part of) the input to a DNN model.
Barbastathis and coworkers” term this method as single-
pass physics-informed DNN. This strategy has been
employed in the very first work on learning-based
holographic reconstruction, in which Rivenson et al.” used
a conventional diffraction-based algorithm’ to reconstruct a
blurred wavefront from a hologram, and then used a trained
DNN to improve the quality. This method has also been
used for other problems such as ghost imaging'’’ and phase
retrieval'”’

In contrast, residual physics is to add the physical
solution to the DNN output so that the DNN model only
needs to learn the mismatch between the model-based
solution and the ground truth'®, Physical regularization, on

output s
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the other hand, harnesses the regularization term from a set
of physical constraints to penalize the network solutions.
The regularization term can be appended as part of the loss
function explicitly or through a reconstruction process
from physics'”. These two concepts are similar to the
recurrent physics-informed DNN and cascaded physics-
informed DNN discussed in”.

More exciting is the strategy of embedded physics. As
shown in Fig. 4, the central idea is to take the physical
model inside the network optimization loop: the physical
model takes care of the well-posed forward propagation
while DNN, the ill-posed backward propagation, in each
iteration™ """ The
calculated output and the measured data can be used to
estimate a defined loss function, which is then used to
update the weights based on an SGD-like algorithm.

Here I would also like to draw the attention of the
readers to an emerging strategy, which I call network
approximating physics. By the name, it is to approximate a
physical model by using a DNN™*'”’. For example, Shi et al.
proposed to approximate the Fresnel zone plates through
successive application of a set of learned 3 x 3
convolution kernels”™ in order to build a DNN model that
can approximate the Fresnel diffraction and occlusion.

error between the forward

V2ytkry=0

Forward problem

Inverse problem

-

Fig. 4 A typical architecture of an embedded physics DNN.

DNN-inspired holography

After the brief introduction of deep learning neural
networks in Sec. 1, now I will review some of the recent
studies on the applications of deep learning in holography
in this section. Before going into the detail, it is worthy of
mentioning that the idea of using NN to for holography is
not new. It has been proposed and demonstrated many
years ago """, But the performance of neural networks
was limited at that time because they were not deep enough
due to the limited computation power. Indeed, one can find
that some of the ideas demonstrated recently have been
proposed at that time.

Digital holographic reconstruction
A hologram can be formed by the superposition of the
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object beam u,(x,y) that carries the information of an
object of interest and a reference beam u,(x,y), where (x,y)
is the spatial coordinates in the hologram plane

1(x,y) = lu,(x,y) + u,(x, ) = u,(x, )u,(x, )
+ [, (x, )P+, () + ()i (x,y)  (26)

where the symbol * stands for phase conjugate.

Conventional approaches

Intuitive approaches for holographic reconstruction are
based on the physical model of diffraction, i.e., the
numerical calculation of the diffraction process of the wave
field’. In the off-axis geometry with a sufficient high
carrier frequency all the three terms in Eq. 26 are well
separated in the Fourier space, and therefore one can
simply apply a spatial filter to remove the two unwanted
terms. However, spatial filtering inevitably results in the
loss of high-frequency components, which greatly hinder
the reconstructed image quality”. In addition, one can use
only a small part of the spatial bandwidth product (SBP)
that the camera can offer'” """ in this case. In in-line DH the
reconstructed image are overlapped with the twin-image
and the zeroth-order terms. Since the removal of the
zeroth-order is comparatively straightforward, most of the
studies on in-line holographic reconstruction is to deal with
the twin image term.

Physics-based approach relies on some physical models
as suggested by the name. Back in 1951, Bragg and
Rogers"” had realized that the twin image is actually the
out-of-focus copy of the reconstructed object image, and it
can be eliminated by the subtraction of the defocused
wavefront from the other. But this method is technically
tricky, and can be implemented only after the invention of
DH"*'"”. The most widely used strategy nowadays is to
tune some physical parameters of the optical system and
acquire the corresponding holograms so as to set up a small
linear equation system that relates the recorded holograms
and the tuning parameters and solve for the object
wavefront. For example, one can introduce multiple phase
retardations stepwise in the reference beam and acquire the
phase-shifted holograms™ ™, or move the camera along the
propagation direction” ”, or slightly tune the wavelength of
the illumination laser beam™. However, as the control of
these parameters is extremely difficult for very short
wavelength radiation, these methods are infeasible for
electron holography'®, X-ray holography', or y-ray
holography'”. In this case, one should implement the phase
shift by using an amplitude element such as the Chinese
Taiji lens'"™ or the Greek-ladder zone plate'™.

Mathematically, the twin image artifact arises due to the
missing of the phase when the hologram is recorded'”. This
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suggests that the twin image artifact can be resolved if the
missing phase of the hologram |uy(x,y)+u.(x,y)| can be
retrieved. This is the fundamental logic behind the phase-
retrieval approach. Effectively, phase retrieval can be
solved by using either a deterministic algorithm that is
called now the transport-of-intensity equation (TIE)"™, or
an iterative algorithm such as the Gerchberg-Saxton (GS)”’
and/or the Hybrid-Input-Output (HIO) algorithm®. This is
in particular useful when the coherence of radiation source
in used is poor (X-ray, for example). Thus the communities
of X-ray holography and electron holography have made
S Along with
the improvement of the technique and better modeling of
the objective function, people now can achieve the
reconstruction of the whole wavefront” ™.

Phase retrieval is actually an inverse source problem of
image reconstruction from magnitude”""”
formulated as a more general class of inverse problems.
The inverse problem approach treats the DH image
reconstruction as a pure digital signal processing (DSP)
problem, and solves it by wusing various numerical
algorithms, such as statistical model™”, sparsity-enforcing
prior”, least squares”, regularization™”’, and compressive
sensing” ™. A critical issue with it, from the computational
point of view, is that the two-dimensional (2D) hologram
must be rearranged as a one-dimensional (1D) vector in
contrast to treating it as a 2D array in the two other
aforementioned approaches. It thus requires the calculation
of very large matrices, which is too heavy to do
efficiently'”.

intensive studies since the late 1980s

It can be

Learning-based approaches

Several strategies have been proposed to solve the
problem of holographic The
straightforward approach is the end-to-end DNN™". For
example, Wang et al.” took the advantages of ResNet'"
and U-Net'™, and developed an alternative approach called
eHoloNet for end-to-end holographic reconstruction.
eHoloNet receives the raw digital hologram as the input,
and produces the artifact-free object wavefront, which is a
phase profile in their study, as the output. They treat the
holographic reconstruction as solving an ill-posed inverse
problem for the function R that maps directly the hologram
space to the object space

reconstruction. most

N
Rieam = argmin " L(u,,, Rl LD +¥(O)  (27)

Ry,0e@ 1

where 6 is an explicit setting of the network parameters ©,

L(-) is the loss function to measure the error between the

n™ phase object u,,, and the corresponding in-line
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hologram Ry{l,}, and Y(0)
parameters with the aim of avoiding overfitting”. They
demonstrated their approach using 10,000 handcraft
images from the MNIST dataset'”’ and 12,651 images of
the USAF resolution chart. All these images were resized
to 768 x 768 pixels and displayed on a phase-only SLM
(Holoeye, LETO), making them effectively phase objects.
The in-line digital holograms of all the 22,651 phase
objects were acquired by a Michelson interferometer. 9000
pairs of handcraft images and their holograms and 11,623
pairs of resolution charts and their holograms were used to
train the eHoloNet, respectively. The lefts were used for
test.

In order to reconstruct both the intensity and phase
simultaneously from a single digital hologram, Wang et al.
proposed a Y-shaped architecture™. The loss function then

is a regularizer on the

is defined as
L = /I-EI + -£P (28)

where £; and £p, defined according to Eq. 15, denote the
loss function of the intensity and phase of the complex
wavefront, and the weight 4 = 0.01 in their experiments so
as to enforce the significance of the phase.

The end-to-end approach can be implemented via
GAN""" as well. One advantage to use GAN is that the
training data do not need to pair up.

The second approach is the physics fusion or single-pass
physics-informed DNN’"*. As discussed in Sec., this is a
two-step process. First, the complex wavefront was
reconstructed by using the conventional numerical free
space propagation back to the object plane. As
aforementioned, the reconstructed wavefront is usually
overlapped with the twin image, and the zeroth-order
artifacts. The amplitude and phase of the reconstructed
wavefront were then sent separately into a DNN, which has
been trained to remove all these artifacts’. In their study,
Rivenson et al. adopted a network architecture based on
ResNet'", as shown in Fig. 5a. The network was trained by
the directly reconstructed amplitude and phase using
numerical free space propagation algorithm and the
corresponding ground truths (which are reconstructed by
using phase retrieval algorithms from multiple
holograms'™>'"**). 100 image pairs were used to train the
network. The results are shown in Fig. 5b. This method can
be applied to off-axis DH to improve the quality of the
reconstructed image as well”.

The third one, physics-informed DNN is an exciting
approach for holographic reconstruction. For example,
Wang et al. have proposed a physics-enhanced DNN
(PhysenNet)” that employs a strategy of incorporating a
physical imaging model into a conventional DNN.
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Fig. 5 a The DNN architecture and the pipeline for holographic reconstruction proposed by Rivenson et al.51 and b the experimental results.

microscope image microscope image

PhysenNet has two apparent advantages. First, it does not
need any data to pre-train. This can be clearly seen in the
objective function

Ry = argmin LIH(R{1},1) (29)
€O

where [ is the hologram or intensity pattern from which we
wish to reconstruct the phase, and H is the physical model,
which is the Fresnel transform in their explicit case. It can
be any other image formation process that can be
accurately modeled”™ ™", Eq. 29 suggests that
PhysenNet just requires the data to be process (7 in this
case) as its input. The interplay between the physical model
and the randomly initialized DNN provides a mechanism to
optimize the network parameters, and produce a good
reconstruction. Second, the reconstructed image satisfies
the constraint imposed by the physical model so that it is
interpretable'”’. The experimental results are plotted in
Fig. 6.

The DNN model in PhysenNet can be replaced by other
neural networks dependent on the task in hand. For
example, Zhang et al. have demonstrated the incorporation

138

of a phase imaging model into GAN .

Phase unwrapping

Holographically usually
wrapped owing to the 27-phase ambiguities and thus need
unwrapping, which is also a typical ill-posed inverse
problem. Conventional phase unwrapping techniques
estimate the phase either by integrating through the

reconstructed phases are

confined path (referred to as path-dependent methods) or
by minimizing the energy function between the wrapped
phase and the approximated true phase (referred to as
minimum-norm approaches)”. DNN provides a very
feasible solution to this kind of problem because it can
resolve the issues such as error accumulation, high
computational time and noise sensitivity that conventional
techniques frequently encounter.

Actually, the idea of using neural networks for phase
unwrapping has been proposed by Takeda et al."”’ and
Kreis et al.'"™'” in the 1990s. But with the developments of
DNN techniques and computer power, much deeper neural
networks are available now. There are ways to treat the
phase unwrapping problem from the DNN point of view. A
straightforward way is to take it as a regression problem,
and develop a DNN to map a wrapped phase to an
unwrapped phase. This can be done, for example, by using
a U-Net trained on labeled data”’. One research line is to
improve the network design, aiming to enhance the phase
quality. For example, Zhang et al."™ have proposed a DNN
model called DeepLabV3+, which can achieve noise
suppression and strong feature representation capabilities.
They demonstrated that it is out-performed the
conventional  path-dependent  and
algorithms. It is also possible to unwrap a phase by using
an untrained DNN in a way similar to PhysenNet”. For
example, Yang et al. have experimentally demonstrated
that the proposed method faithfully recovers the phase of
complex samples on both real and simulated data”.

minimum-norm
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Alternatively, one can treat phase unwrapping as a
classification problem. For example, Zhang et al.”’ have
demonstrated it by transferring phase unwrapping into a
multi-class classification problem and introduced an
efficient segmentation network to identify the classes.
Their experimental results are plotted in Fig. 7.

Learning-based phase unwrapping algorithms have been
applied to solve the problems in many different fields of
studies, such as biology'” and Fourier domain Doppler
optical coherence tomography””

Autofocusing

Autofocusing is about the automatic determination of the
numerical calculation of the free space propagation
distance of the wavefront from the hologram plane™'. This
is in particular important for the applications of DH in
industrial and biological inspection™”. Conventionally, the
focused distance is determined by a criterion function with
respect to the reconstruction distance. The criterion
function can be defined in many ways, such as the entropy
of the reconstructed image, the magnitude differential™”,
and sparsity’”, and usually has a local maximum or
minimum value at the focal plane.

Learning-based  autofocusing algorithms employ
different strategies. The prediction of the focusing distance

is not made by searching a local extreme value of a
criterion function, but by directly analyzing a digital
hologram by using a deep neural network. One can think of
autofocusing as a regression problem or a classification
problem. The regression approach is to train the network
by using a stack of artifact-free reconstructed images that
are paired up with a hologram™™'. Each image in the stack
is associated with that the
reconstruction distance. All these numbers are used to
rectify the output layer during the training process. Taking
the advantage of the U-Net™ and ResNet"', Wu et al”
proposed the HIDEF (Holographic Imaging using Deep
learning for Extended Focus) CNN. This allows the direct
reconstruction at the correct distance when a hologram is
inputted to the trained HIDEF CNN. Jaferzadeh et al.
proposed a DNN model with a regression layer as the top
layer to estimate the best reconstruction distance™".

The classification approach was proposed by Ren et al”
and Shimobaba et al”. For example Ren and coworkers
experimentally recorded the 5000 holograms of several
objects (a resolution chart, a testis slice, a ligneous
dicotyledonous stems, an earthworm crosscut, etc.) at 10
different distances; and use the holograms and the
associated distance values to train their neural network.

An alternative strategy is to take the focusing distance as

a number indicates
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Fig. 7 Unwrapping results on real data. From left to right are: wrapped phases [input, a, e], reconstructed unwrapped phases by the DNN [b, f] and
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an uncertain parameter, and ask the neural network to
optimize automatically'”
function can be written as

[Re,d] = argmin L(H[Ry(]),d],])

0e€®, d

. In this case, the objective

(30)

where the uncertain focusing distance d enters the the
physical model H now, and will be optimized by the
network.

The objective function in the form of Eq. 30 is similar to
Eq. 29. This suggests that the only input required by the
neural network is the hologram J, and the DNN does not
need to be pre-trained on any dataset. As shown in Fig. 8,
the algorithm will converge to the exact distance value
along with proceeding of the iteration.

Phase Aberration Compensation

Learning-based approaches have also been used for
phase aberration compensation in digital holographic
microscopy’'*”. Again, phase aberration compensation
can be formulated as a classification™ or a regression "
problem. In the work by Nguyen et al.”, the role DNN
plays is to segment the reconstructed and unwrapped
phase. The phase aberration then can be determined by
Zernike polynomial fitting, and its conjugate can be
numerically calculated to compensate the aberration.
Nguyen et al. experimentally took the holograms of 306
breast cancer cells as the input and the corresponding
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Fig. 8 The reconstruction process of a phase object. a the original
phase object. b the diffraction pattern. The retrieved phase at the
epoch of ¢ 900, d 10300, and e 19800. The behavior of f the loss
function, g estimated distance, and h the SSIM value as a function of
the number of epoch. (after 135).

manually segmented maps as the output to train their
is also a U-Net + ResNet
architecture in this case. They used the softmax function

neural network, which

defined in Eq. 6 in the last layer in their neural network to
calculate the prediction probability of background/cell
potential, and the cross-entropy loss defined in Eq. 17 for
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back propagation. The experimental results are plotted in
Fig. 9.

In contrast, the regression approach proposed by Xiao et
al.”” endeavors to optimize the coefficients for constructing
the phase aberration map that act as responses
corresponding to the input aberrated phase image.
Embedded physics DNN can be used for this problem as
well. Encapsulating the image prior and the system
physics, Bostan et al.”* have proposed an untrained DNN
that can simultaneously reconstruct the phase and pupil-
plane aberrations by fitting the weights of the network to
the captured images.

Suppression of Speckle

As a coherent imaging modality, DH reconstruction is
also influenced by the coherence of the illumination laser
source' ™, which naturally results in speckle™’. The
elimination of speckle noise has been one of the main
issues in DH. Conventionally, this can be done either
optically or digitally. Optical methods usually require
multiple measurements under different conditions. Digital
methods can work on a single hologram but the reduction
of speckle results in the loss of information as well. Bianco
et al have given a very nice review of the most important
speckle removal techniques™.

Recently, Jeon et al.” have demonstrated that, by using
DNN, it is possible to remove the speckle without any
degradation of the image quality. The network architecture
they used is again the combination of U-Net and ResNet.
For supervised learning, one needs to pair up the speckled
images and the corresponding speckle-free ones in order to
train the network. But speckle-free images are unlikely to
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be obtainable from experimentally acquired holograms. So
they used numerically generated speckled images from
speckle-free images according to the model y=R(x)+
N(0,¢?), where R(s) is the Rayleigh distribution with scale
parameter ¢, and N(u,s?) is the Gaussian distribution with
the mean y and standard deviation ¢, to train their network,
and test it with experimentally acquired holograms. Similar
DNN can be applied to remove the speckle noise in phase
image from holographic interferometry™”. The strict
requirement of labeled data can be released by using a
more suitable network architecture such as Noise2Noise™”.
For example, Yin et al.”’ have demonstrated a speckle
removal DNN without using clean data.

Computer-generated holography

CGH has been recognized as the most promising true-3D
display technology since it can account for all human
visual cues such as stereopsis and eye focusing””**" as well
as a powerful tool for the test of optical elements* ™. In
particular, for the application in holographic display, it
requires the generated holograms to be reasonably large in
size. But the calculation of such holograms within
acceptable time has been one of the main challenges in this
field’". Although iterative phase-retrieval algorithms™***"*"*
have been intensively employed for this task, modern
approaches for CGH calculation are non-iterative™*”'"*",
in combination of acceleration techniques such as look-up
table”'"* and the use of GPU"".

The use of DNN has dramatically accelerated the
calculation of CGH™ "™, People have used U-Net-based
architecture to generate phase-only holograms™ and binary

holograms™"°, Y-shaped architecture to generate multi-depth

— PCA

M\ |— CNN+ZPF
iy M\”‘\,«,‘W’Lf\v/{ Y'"\W‘fh V\%M :

600 800 1000 1200

Fig. 9 a Phase aberration, b unwrapped phase overlaid with CNN’s image segmentation mask, where background (color denoted) is fed into ZPF,
¢ conjugated residual phase using CNN + ZPF, d fibers are visible after aberration compensation and are indicated by blue arrows, and e phase
profile along the dash line in d. Yellow bars denote the flatness of region of interest. (after 58).
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holograms”®, and autoencoder-based DNN for the fast
generation of high-resolution holograms™*'. DNN has also
been used to improve the quality of holographic display””’,
and it allows to train in the loop’’. Eybposh et al. have
demonstrated an unsupervised learning based on GAN to
achieve a fast hologram computation”, although there is
argument that this indirect training strategy may not obtain
an optimal hologram®. The superb DNN-based algorithms
allow the design of CGH to generate not just scalar but
even arbitrary 3D vectorial fields in an instant and accurate
manner”"”,

A DNN-based CGH synthesis technique called tensor
holography for true 3D holographic display has been
proposed recently by Shi et al.”. Tensor holography is a
physics-informed DNN technique. It imposes underlying
physics (Fresnel diffraction) to train a CNN as an efficient
proxy for both. Tensor holography was trained on MIT-
CGH-4K Fresnel holograms dataset, consisting of 4000
pairs of RGB-depth (RGB-D) images and the
corresponding 3D holograms that take the occlusion effect
into account. Thus their DNN takes the 4-channel RGB-D
image as its input, and predicts a color hologram as a 6-
channel image (RGB amplitude and RGB phase), which
can be used to drive three optically combined SLMs or one
SLM in a time-multiplexed manner to achieve full-color
holographic display.

Holography-inspired DNN

Holography has been one of the important avenues to
implement optical neural networks (ONN). Early
researches include the optical implementations of fully-
connected neural networks™ ™ and the Hopfield model””,
which is the base of the recurrent neural network (RNN).
Rather than using logical neurons as in the digital
counterpart, holographic neural networks rely on
interconnection””’ that a hologram is inherently capable
of*”. In a fully-connected holographic neural network, the
weights are stored in the pixels (neurons) of the holograms.
Each neuron in a layer (hologram) performs a simple
modulation of the light that impinges onto it from an
upstream layer and subsequently illuminates a downstream
layer. A holographic neural networks can be created in a
photorefractive crystal”™”, which is inherently a 3D device
that has a potential to store billions of weights. Thus it is in
principle promising to solve large-scale inverse problems.
However, interest in further developments has been on the
wane owing to some unfortunate reasons™’.

Modern implementation of holographic neural networks
takes the advantage of diffraction™, and thus named
diffraction deep neural networks (D’NN). In the hardware
implementation, the holograms in D’NN are actually
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diffractive optical elements (DOE), which can be
fabricated using 3D  printing (see  Fig. 10)",

nanomanufacturing™', or electric addressable digital micro-
mirror devices (DMD)™. The weights are stored in the
pixels as in conventional holographic neural networks” ™’
There are good reasons to implement D’NN on DMD and
SLM: it allows the creation of parallel and reconfigurable
network connections as well as the addition of nonlinearity
to each layer via fast square-law detection. Such cascaded
nonlinear operations strongly amplify the dimensionality of
data representation so that they can leverage for
challenging computations™.

As many other optical neural networks™, the original
D’NN engine was trained off-line”’. But efforts have been
made to implement better training strategy. For example,
Zhou et al. have demonstrated an in situ back propagation
training™, Xiao et al. have proposed a back propagation
technique that updates the unitary weights through the
gradient translation from Euclidean to Riemannian space™,
and a method to implement optical dropout™.

People have also investigated the applications of D°NN

for  logic  operations™”’,  optical  information
processing”*”,  holographic  reconstruction™’, pulse
shaping™', spectrally encoded single-pixel machine
vision™”.

Conclusion and perspective remarks

To conclude, I have reviewed the recent progresses on
the field of deep holography, describing how holography
and deep neural networks can benefit from each other. I
would like to emphasize that this is a rapidly developing
field. New and exciting results are published every few
days. It is impossible to cover all the works within a single
literature review article. It is also challenging to catch up
with all the progresses. But I do identify a few lines of
trend for further studies. For DNN-inspired holography,
instead of trying different DNN architectures, an important
trend is to incorporate a physical model into a DNN
model' . Indeed, this idea has been received intensive
attentions from the researchers in diverse fields''” and
will be a future direction. I have discussed five different
ways of incorporating a physical model and showed their
applications in solving various problems with respect to
holography. Of particular interest is PhysenNet as it does
not require any data to train in advance and the network
prediction is satisfied with the constraint imposed by the
physical model. However, the optimization is slow in
comparison to conventional data-driven DNN™"*' and
thus lightweight network architectures and more efficient
training algorithms are highly demanded. Perhaps it is also
possible to take the advantages of both the physics-
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, SO that
the training can be more efficient and the generalization,
significantly improved.

For holography-inspired DNN, most of the studies
published so far focus on optical inference. The capability
of light-speed processing in parallel of holographic neural
networks indeed guarantees tremendous inference power,
even outperforming Nvidia’s top of the line Tesla V100
tensor core GPU in certain task’”. But the advantage of
optics cannot be fully utilized if on-line training of the
network cannot be perform optically. Initial efforts have
been making along this line” . But there are many
possibilities out there to efficiently implement most of the
fundamental functions in a DNN. Furthermore, the
performance of D°NN is explicitly determined by the pixel
number, pixel size, and frame rate of SLM as these factors
are related to the scale and reconfigurability of matrix
computation and the capability of interconnection. Current
liquid crystal devices are too slow; DMD is fast but its
pixel pitch is too large. One promising way to get around

informed and conventional data-driven methods

relies on the advancing of novel optical materials and
devices that can modulate the wave in the sub-wavelength
scale” in high speed.

From a higher level point of view, all the DNN methods
I have discussed herein belong to a wide class of
algorithms called neural computing, which itself is also fast
evolving. Indeed, one can have an impression of the
evolution of DNN from feedforward NN to CNN and U-
Net, and so on. Neural computing provides us more
powerful algorithms such as the spiking neurosynaptic
networks (SNN)™ that can model the behavior and
learning potential of the brain. The applicability and
potential of these new algorithms in holography are a still
open question.

Nevertheless, I hope I have convinced you that the field
of deep holography as a whole is rich and exciting. It is a
cross-disciplinary that requires holography and neural
computing and many others. The mergence of them
stimulates the development of each other, and gives us a
fantastic field to explore.
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