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1 Results of changing fibre sizes and core numbers 

Based on the commercial seven-core fibre (YOFC, 150um diameter), different 

diameters of fibre (100um and 150um) and different core numbers of fibre (4-core and 

10-core) were obtained for simulation to verify that changing fibre size or core number 

is also suitable for clearly imaging the fibre core based on the Bessel beam illumination 

method. It should be noted that only the parameters of the fibre were changed, and the 

other parts in the optical path remained unchanged. Fig. S1, Fig. S2, and Fig. S3 show 

a higher-contrast transmission pattern when using the Bessel beam as the illumination 

light, which provides a clearer pattern for core distribution measurement. 

 

Fig. S1. Pattern comparison of 4-core fibre with a diameter of 125um under the 

illumination conditions of Bessel beam and Gaussian beam. a The 4-core fibre with a 

diameter of 125um is simulated with fibre rotation of 0°, 10°, 20°, and 30°. 

 



 

Fig. S2. Pattern comparison of 4-core fibre with a diameter of 150um under the 

illumination conditions of Bessel beam and Gaussian beam. a The 4-core fibre with a 

diameter of 150um is simulated with fibre rotation of 0°, 10°, 20°, and 30°. 

 



 

Fig. S3. Pattern comparison of 10-core fibre with a diameter of 150um under the 

illumination conditions of Bessel beam and Gaussian beam. a The 10-core fibre with a 

diameter of 150um is simulated with fibre rotation of 0°, 10°, 20°, and 30°. 

2 Comparison between fibres with different diameters 

Based on the actual seven-core fibre (YOFC, 150um diameter), different diameters 

of fibre (100um, 450um) was obtained by scaling equally for simulation to verify that 

under the illumination conditions of using the same optical components, different cores 

can still be clearly distinguished in the pattern of Bessel beam transmitted through the 

fibre, as shown in Fig. S4. 



 

Fig. S4. Comparison between fibres with different diameters in simulation. a The seven-

core fibre with diameters of 100um, 150um, and 450um are simulated with fibre rotation of 0°, 

20°, and 40°, showing that fibres of different diameters can have good results separating 

different cores under the same illumination source. 

3 Precision calculation 

The precision of the core distribution measurement was defined as the width of the 

core distribution when the correlation coefficient drops to 
−1𝑑𝐵

50
 of the peak. As shown 

in Fig. S5, the peak correlation coefficient is 0.933966 for the Bessel beam and 

0.985017 for the Gaussian beam when the measured pattern is 0°. The width of the core 

distribution of -1dB of the peak in reference patterns is 9.9875° of the Bessel beam and 

25.568° of the Gaussian beam. Similarly, when the measured pattern is 20° and 40°, the 

width is 5.6929° and 9.1883°of Bessel beam, and 18.2771° and 16.4791° of Gaussian 

beam. The precision of 0.166° and 0.402° is then obtained by averaging the width of 

the core distribution of three measured patterns and dividing by 50. 



 

Fig. S5. Calculation of precision of the core distribution measurement. a The coordinate 

points on both sides of the peak are the position when the peak drops by -1dB.  

4 Deep learning data pre-process 

In this study, an automated rotation-capture-rotation image capture cycle was 

achieved with the aid of the rotation apparatus and self-developed software. The cyclic 

process involves rotating the seven-core fibre and acquiring a Bessel beam transmission 

image, as well as an image of the fibre end-face image to measure the fibre core angle 

distribution. As the fibre cores are arranged equidistantly based on the vertices and 

centres of the hexagon, identifying the angle can be simplified to 0–60 degrees. The 

transmission images were marked with the angle through the process, as shown in Fig. 

4a. 

To process the acquired raw image, the software first cropped the image to remove 

the extra black margins surrounding the fibre end-face. Subsequently, the contour 

curves of the seven circular fibre cores were obtained using graphical processing 

techniques, such as grayscale, threshold binarization, and edge detection. Finally, the 

centre coordinates of the circles were calculated using a fitting function, and the angle 

of the fibre core angle distribution was determined by utilizing trigonometric functions. 

With this method, an efficient and reliable tool was developed to acquire multicore fibre 

transmission images and mark core angle distributions in an automated manner.  

 



5 Neural network structure 

In the study, a Convolutional Neural Networks-based (CNN) approach for fibre core 

angle distribution recognition is employed, with an image classification task. The base 

CNN model utilized in the study is the ConvNeXt neural network, which is a modified 

version of the ResNet network. The structure of the ConvNeXt network is shown in Fig. 

S6, and it is similar to ResNet in that both models extract image features through the 

stacking of residual blocks with different feature layer lengths. After multi-layer feature 

extraction, a Global Average Pooling (G.A.P) layer is applied to the data to minimize 

overfitting by reducing the total number of parameters in the model. Subsequently, the 

normalization layer and the Softmax layer are used to map the two-dimensional feature 

data to the one-dimensional predicted classification. Data is labelled using one-hot 

encoding.  

The network structures used for deep learning are large and have many parameters 

that require a GPU to accelerate the computation, so in the training step, it requires 

workstation computers with powerful GPUs. Also, since training a large network 

requires a lot of samples, it takes some preparation time. However, once the network 

training is complete, the trained network can be transferred to a dedicated GPU, NPU 

or FPGA that can be adapted to edge computing, which is portable and inexpensive. 

A database of Bessel beam transmission patterns with core angle distributions saved 

at angle resolutions of 0.2° was created, corresponding to 300 classification categories 

(by one-hot encoding). To account for potential image discrepancies caused by platform 

micro-vibrations, multiple photos were captured for each classification category. 

The dataset is derived from the pattern of the Bessel beam transmitting through a 

seven-core fibre at different core angle distributions, captured by CMOS. To reduce 

redundancy information, the original images were cropped to retain only the central 

500x500 pixels and then resized to 224x224 pixels to accelerate the training process. 

In the training dataset consisting of images captured by 15 fibres, 20% images were 

randomly selected as validation dataset, which are not involved in network training, 



and the validation dataset were used to evaluate the classification performance of the 

neural network after each training epoch. The cross-entropy loss function, commonly 

utilized in multi-classification tasks, was employed in this study 

𝐿𝑜𝑠𝑠 = −
1
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Here, 𝑦𝑖 represents the true category value of the sample, ŷ𝑖 denotes the predicted 

value from the neural network, and n is the number of classification categories. As the 

distribution of the predicted sample ŷ𝑖 gets closer to the true value 𝑦𝑖, 𝐿𝑜𝑠𝑠 becomes 

smaller until it approaches zero. 

The model was trained on a computer with an AMD Ryzen 5600X processor, 32GB 

RAM, and an NVIDIA GeForce GTX 1660 SUPER graphics card, using the PyTorch 

environment. The batch size was set to 8, and the learning rate was initially set to 5e-4, 

with AdamW used as the optimizer. To achieve faster and more accurate model 

convergence, the learning rate decreased as the training epoch increased.  

 

Fig. S6. Deep learning neural network structure. a The structure of the Convolutional Neural 

Network of ConvNeXt. Ultra-deep neural networks are formed by combining multi-scale 

residual blocks. 

 


