[1] CDC. Parasites-Neglected Parasitic Infections (NPIs) in the United States. https://www.cdc.gov/parasites/npi/index.html. Accessed 30 Dec 2017)
[2] Poole, D. N. & McClelland, R. S. Global epidemiology of Trichomonas vaginalis. Sex. Transm. Infect. 89, 418-422 (2013). doi: 10.1136/sextrans-2013-051075
[3] Pérez-Molina, J. A. & Molina, I. Chagas disease. Lancet 391, 82-94 (2018). doi: 10.1016/S0140-6736(17)31612-4
[4] Büscher, P., Cecchi, G., Jamonneau, V. & Priotto, G. Human African trypanosomiasis. Lancet 390, 2397-2409 (2017). doi: 10.1016/S0140-6736(17)31510-6
[5] Krüger, T. & Engstler, M. Flagellar motility in eukaryotic human parasites. Semin. Cell. Dev. Biol. 46, 113-127 (2015). doi: 10.1016/j.semcdb.2015.10.034
[6] Josenhans, C. & Suerbaum, S. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291, 605-614 (2002). doi: 10.1078/1438-4221-00173
[7] Shimogawa, M. M. et al. Parasite motility is critical for virulence of African trypanosomes. Sci. Rep. 8, 9122 (2018). doi: 10.1038/s41598-018-27228-0
[8] Field, M. C. et al. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat. Rev. Microbiol. 15, 217-231 (2017). doi: 10.1038/nrmicro.2016.193
[9] Langousis, G. & Hill, K. L. Motility and more: the flagellum of Trypanosoma brucei. Nat. Rev. Microbiol. 12, 505-518 (2014). doi: 10.1038/nrmicro3274
[10] Malvy, D. & Chappuis, F. Sleeping sickness. Clin. Microbiol. Infect. 17, 986-995 (2011). doi: 10.1111/j.1469-0691.2011.03536.x
[11] Khare, S. et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537, 229-233 (2016). doi: 10.1038/nature19339
[12] Stuart, K. et al. Kinetoplastids: related protozoan pathogens, different diseases. J. Clin. Invest. 118, 1301-1310 (2008). doi: 10.1172/JCI33945
[13] Fairlamb, A. H. & Horn, D. Melarsoprol resistance in African trypanosomiasis. Trends Parasitol. 34, 481-492 (2018). doi: 10.1016/j.pt.2018.04.002
[14] Fernandes, M. C. & Andrews, N. W. Host cell invasion by Trypanosoma cruzi : a unique strategy that promotes persistence. FEMS Microbiol. Rev. 36, 734-747 (2012). doi: 10.1111/j.1574-6976.2012.00333.x
[15] Dorn, P. L. et al. The diversity of the Chagas parasite, Trypanosoma cruzi, infecting the main Central American vector, Triatoma dimidiata, from Mexico to Colombia. PLoS Negl. Trop. Dis. 11, e0005878 (2017). doi: 10.1371/journal.pntd.0005878
[16] Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545-1602 (2016). doi: 10.1016/S0140-6736(16)31678-6
[17] CDC. Epidemiology & Risk Factors. https://www.cdc.gov/parasites/chagas/epi.html. Accessed 16 May 2018
[18] Chappuis, F., Loutan, L., Simarro, P., Lejon, V. & Büscher, P. Options for field diagnosis of human African trypanosomiasis. Clin. Microbiol. Rev. 18, 133-146 (2005). doi: 10.1128/CMR.18.1.133-146.2005
[19] Bargul, J. L. et al. Species-specific adaptations of trypanosome morphology and motility to the mammalian host. PLoS. Pathog. 12, e1005448 (2016). doi: 10.1371/journal.ppat.1005448
[20] de Sousa, M. A. Morphobiological characterization of Trypanosoma cruzi Chagas, 1909 and its distinction from other Trypanosomes. Mem. Inst. Oswaldo. Cruz. 94(Suppl 1), 205-210 (1999). doi: 10.1590/S0074-02761999000700031
[21] Lumbala, C. et al. Prospective evaluation of a rapid diagnostic test for Trypanosoma brucei gambiense infection developed using recombinant antigens. PLoS Negl. Trop. Dis. 12, e0006386 (2018). doi: 10.1371/journal.pntd.0006386
[22] Santos, F. L. N. et al. Chronic Chagas disease diagnosis: a comparative performance of commercial enzyme immunoassay tests. Am. J. Trop. Med. Hyg. 94, 1034-1039 (2016). doi: 10.4269/ajtmh.15-0820
[23] Afonso, A. M., Ebell, M. H. & Tarleton, R. L. A systematic review of high quality diagnostic tests for Chagas disease. PLoS Negl. Trop. Dis. 6, e1881 (2012). doi: 10.1371/journal.pntd.0001881
[24] Hernández, C., Teherán, A., Flórez, C. & Ramírez, J. D. Comparison of parasite loads in serum and blood samples from patients in acute and chronic phases of Chagas disease. Parasitology 145, 1837-1843 (2018). doi: 10.1017/S0031182018000598
[25] Büscher, P. et al. Improved Models of Mini Anion Exchange Centrifugation Technique (mAECT) and Modified Single Centrifugation (MSC) for sleeping sickness diagnosis and staging. PLoS Negl. Trop. Dis. 3, e471 (2009). doi: 10.1371/journal.pntd.0000471
[26] Storey, B. et al. Utilization of computer processed high definition video imaging for measuring motility of microscopic nematode stages on a quantitative scale: "The Worminator". Int. J. Parasitol. Drugs Drug Resist 4, 233-243 (2014). doi: 10.1016/j.ijpddr.2014.08.003
[27] Kennedy, P. G. E. Human African trypanosomiasis of the CNS: current issues and challenges. J. Clin. Invest. 113, 496-504 (2004). doi: 10.1172/JCI200421052
[28] CDC. STD Facts-Trichomoniasis. https://www.cdc.gov/std/trichomonas/stdfact-trichomoniasis.htm. Accessed 20 April 2018
[29] Artificial Cerebrospinal Fluid (ACSF) (10×). Cold Spring Harb. Protoc. 2017; https://doi.org/10.1101/pdb.rec094342.
[30] Garber, G. E. The laboratory diagnosis of Trichomonas vaginalis. Can. J. Infect. Dis. Med. Microbiol. 16, 35-38 (2005). doi: 10.1155/2005/373920
[31] Twu, O. et al. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc. Natl Acad. Sci. USA 111, 8179-8184 (2014). doi: 10.1073/pnas.1321884111
[32] Patil, M. J., Nagamoti, J. & Metgud, S. C. Diagnosis of Trichomonas vaginalis from vaginal specimens by wet mount microscopy, in pouch TV culture system, and PCR. J. Glob. Infect. Dis. 4, 22-25 (2012). doi: 10.4103/0974-777X.93756
[33] CDC. Trichomoniasis-2015 STD Treatment Guidelines. https://www.cdc.gov/std/tg2015/trichomoniasis.htm. Accessed 27 May 2018
[34] Deborggraeve, S. et al. Diagnostic Accuracy of PCR in gambiense sleeping sickness diagnosis, staging and post-treatment follow-up: a 2-year longitudinal study. PLoS Negl. Trop. Dis. 5, e972 (2011). doi: 10.1371/journal.pntd.0000972
[35] Enyaru, J. C. K., Matovu, E., Nerima, B., Akol, M. & Sebikali, C. Detection of T.b. rhodesiense trypanosomes in humans and domestic animals in South East Uganda by amplification of serum resistance-associated gene. Ann. N. Y. Acad. Sci. 1081, 311-319 (2006). doi: 10.1196/annals.1373.041
[36] Sabino, E. C. et al. Detection of Trypanosoma cruzi DNA in blood by PCR is associated with Chagas cardiomyopathy and disease severity. Eur. J. Heart Fail. 17, 416-423 (2015). doi: 10.1002/ejhf.220
[37] Rosenblatt, J. E., Reller, L. B. & Weinstein, M. P. Laboratory diagnosis of infections due to blood and tissue parasites. Clin. Infect. Dis. 49, 1103-1108 (2009). doi: 10.1086/605574
[38] Feilij, H., Muller, L. & Gonzalez Cappa, S. M. Direct micromethod for diagnosis of acute and congenital Chagas' disease. J. Clin. Microbiol. 18, 327-330 (1983). doi: 10.1128/JCM.18.2.327-330.1983
[39] Cheesbrough M. District Laboratory Practice in Tropical Countries. 2nd edn. (Cambridge University Press, Cambridge, 2005).
[40] Bisser, S. et al. Sensitivity and specificity of a prototype rapid diagnostic test for the detection of Trypanosoma brucei gambiense infection: a multi-centric prospective study. PLoS Negl. Trop. Dis. 10, e0004608 (2016). doi: 10.1371/journal.pntd.0004608
[41] Sánchez-Camargo, C. L. et al. Comparative evaluation of 11 commercialized rapid diagnostic tests for detecting Trypanosoma cruzi antibodies in serum banks in areas of endemicity and nonendemicity. J. Clin. Microbiol. 52, 2506-2512 (2014). doi: 10.1128/JCM.00144-14
[42] Büscher, P. et al. Sensitivity and specificity of HAT Sero-K-SeT, a rapid diagnostic test for serodiagnosis of sleeping sickness caused by Trypanosoma brucei gambiense: a case-control study. Lancet Glob. Health 2, e359-e363 (2014). doi: 10.1016/S2214-109X(14)70203-7
[43] Camara, M. et al. Sleeping sickness diagnosis: use of buffy coats improves the sensitivity of the mini anion exchange centrifugation test. Trop. Med. Int. Health 15, 796-799 (2010). doi: 10.1111/j.1365-3156.2010.02546.x
[44] Muhanguzi, D. et al. Cost analysis of options for management of African Animal Trypanosomiasis using interventions targeted at cattle in Tororo District; south-eastern Uganda. Parasit. Vectors 8, 387 (2015). doi: 10.1186/s13071-015-0998-8
[45] Rodríguez, J. A. et al. Propulsion of African trypanosomes is driven by bihelical waves with alternating chirality separated by kinks. Proc. Natl Acad. Sci. USA 106, 19322-19327 (2009). doi: 10.1073/pnas.0907001106
[46] Heddergott, N. et al. Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream. PLoS Pathog. 8, e1003023 (2012). doi: 10.1371/journal.ppat.1003023
[47] Hotez, P. J. et al. Helminth infections: the great neglected tropical diseases. J. Clin. Invest. 118, 1311-1321 (2008). doi: 10.1172/JCI34261
[48] D'Ambrosio, M. V. et al. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci. Transl. Med 7, 286re4 (2015). http://cn.bing.com/academic/profile?id=15b139bb8ee0eef7c470116ec2e568df&encoded=0&v=paper_preview&mkt=zh-cn
[49] Mandracchia, B. et al. Biospeckle decorrelation quantifies the performance of alginate-encapsulated probiotic bacteria. IEEE J. Sel. Top. Quantum Electron 25, 7200206 (2019). http://cn.bing.com/academic/profile?id=c774c3ce8c8a976137faa17004cf3c28&encoded=0&v=paper_preview&mkt=zh-cn
[50] Uilenberg G. A field guide for the diagnosis, treatment and prevention of African animal trypanosomosis. (Food and Agriculture Organization of the United Nations, Rome, 1998).
[51] Oberholzer, M., Lopez, M. A., Ralston, K. S. & Hill, K. L. Approaches for functional analysis of Flagellar proteins in African trypanosomes. Methods Cell Biol. 93, 21-57 (2009). doi: 10.1016/S0091-679X(08)93002-8
[52] Kisalu, N. K., Langousis, G., Bentolila, L. A., Ralston, K. S. & Hill, K. L. Mouse infection and pathogenesis by Trypanosoma brucei motility mutants. Cell Microbiol. 16, 912-924 (2014). doi: 10.1111/cmi.12244
[53] Clark, C. G. & Diamond, L. S. Methods for cultivation of luminal parasitic protists of clinical importance. Clin. Microbiol. Rev. 15, 329-341 (2002). doi: 10.1128/CMR.15.3.329-341.2002
[54] Zhang, Y. B., Wang, H. D., Wu, Y. C., Tamamitsu, M. & Ozcan, A. Edge sparsity criterion for robust holographic autofocusing. Opt. Lett. 42, 3824-3827 (2017). doi: 10.1364/OL.42.003824
[55] Tamamitsu M., Zhang Y. B., Wang H. D., Wu Y. C., Ozcan A. Comparison of Gini index and Tamura coefficient for holographic autofocusing based on the edge sparsity of the complex optical wavefront. arXiv preprint arXiv: 1708.08055, 2017.
[56] Goodman, J. W. Introduction to Fourier Optics.. 3rd edn, (Greenwood Village, Roberts & Co, 2005).
[57] Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med 6, 267ra175 (2014). doi: 10.1126/scitranslmed.3009850
[58] Mudanyali, O. et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab. Chip. 10, 1417 (2010). doi: 10.1039/c000453g
[59] Memmolo, P. et al. Automatic focusing in digital holography and its application to stretched holograms. Opt. Lett. 36, 1945-1947 (2011). doi: 10.1364/OL.36.001945