[1] Novotny, L. & Van Hulst, N. Antennas for light. Nat. Photonics 5, 83–90 (2011).
[2] Biagioni, P., Huang, J. S. & Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012). doi: 10.1088/0034-4885/75/2/024402
[3] Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 6, 737–748 (2012). doi: 10.1038/nphoton.2012.244
[4] Hanke, T. et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett. 103, 257404 (2009). doi: 10.1103/PhysRevLett.103.257404
[5] Vampa, G. et al. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys. 13, 659–662 (2017). doi: 10.1038/nphys4087
[6] Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014). doi: 10.1038/nature13455
[7] Razdolski, I. et al. Resonant enhancement of second-harmonic generation in the mid-infrared using localized surface phonon polaritons in subdiffractional nanostructures. Nano Lett. 16, 6954–6959 (2016). doi: 10.1021/acs.nanolett.6b03014
[8] Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561, 507–511 (2018). doi: 10.1038/s41586-018-0508-1
[9] Guo, H. R. et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics 12, 330–335 (2018). doi: 10.1038/s41566-018-0144-1
[10] Chang, Y. C. et al. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun. 7, 10568 (2016). doi: 10.1038/ncomms10568
[11] Law, S., Yu, L., Rosenberg, A. & Wasserman, D. All-semiconductor plasmonic nanoantennas for infrared sensing. Nano Lett. 13, 4569–4574 (2013). doi: 10.1021/nl402766t
[12] Guilengui, V. N., Cerutti, L., Rodriguez, J. B., Tournié, E. & Taliercio, T. Localized surface plasmon resonances in highly doped semiconductors nanostructures. Appl. Phys. Lett. 101, 161113 (2012). doi: 10.1063/1.4760281
[13] Panah, M. E. A. et al. Mid-IR optical properties of silicon doped InP. Opt. Mater. Express 7, 2260–2271 (2017). doi: 10.1364/OME.7.002260
[14] Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 4, 495–497 (2010). doi: 10.1038/nphoton.2010.171
[15] Baldassarre, L. et al. Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates. Nano Lett. 15, 7225–7231 (2015). doi: 10.1021/acs.nanolett.5b03247
[16] Frigerio, J. et al. Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics. Phys. Rev. B 94, 085202 (2016). doi: 10.1103/PhysRevB.94.085202
[17] Neubrech, F. et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101, 157403 (2008). doi: 10.1103/PhysRevLett.101.157403
[18] Adato, R. et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl Acad. Sci. USA 106, 19227–19232 (2009). doi: 10.1073/pnas.0907459106
[19] Brown, L. V. et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. J. Am. Chem. Soc. 135, 3688–3695 (2013). doi: 10.1021/ja312694g
[20] Strikwerda, A. C., Zalkovskij, M., Iwaszczuk, K., Lorenzen, D. L. & Jepsen, P. U. Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold. Opt. Express 23, 11586–11599 (2015). doi: 10.1364/OE.23.011586
[21] Hon, N. K., Soref, R. & Jalali, B. The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared. J. Appl. Phys. 110, 011301 (2011). doi: 10.1063/1.3592270
[22] Zhang, L., Agarwal, A. M., Kimerling, L. C. & Michel, J. Nonlinear group Ⅳ photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics 3, 247–268 (2014). doi: 10.1515/nanoph-2013-0020
[23] Boyd, R. W., Shi, Z. M. & De Leon, I. The third-order nonlinear optical susceptibility of gold. Opt. Commun. 326, 74–79 (2014). doi: 10.1016/j.optcom.2014.03.005
[24] Fischer, M. P. et al. Optical activation of germanium plasmonic antennas in the mid-infrared. Phys. Rev. Lett. 117, 047401 (2016). doi: 10.1103/PhysRevLett.117.047401
[25] Mesch, M., Metzger, B., Hentschel, M. & Giessen, H. Nonlinear plasmonic sensing. Nano Lett. 16, 3155–3159 (2016). doi: 10.1021/acs.nanolett.6b00478
[26] Höppener, C. & Novotny, L. Imaging of membrane proteins using antenna-based optical microscopy. Nanotechnology 19, 384012 (2008). doi: 10.1088/0957-4484/19/38/384012
[27] Palomba, S. & Novotny, L. Near-field imaging with a localized nonlinear light source. Nano Lett. 9, 3801–3804 (2009). doi: 10.1021/nl901986g
[28] Ginzburg, P., Krasavin, A. V., Wurtz, G. A. & Zayats, A. V. Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures. ACS Photonics 2, 8–13 (2015). doi: 10.1021/ph500362y
[29] Sakat, E. et al. Near-field imaging of free carriers in ZnO nanowires with a scanning probe tip made of heavily doped germanium. Phys. Rev. Appl. 8, 054042 (2017). doi: 10.1103/PhysRevApplied.8.054042
[30] Rosenblad, C. et al. Silicon epitaxy by low-energy plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 16, 2785–2790 (1998). doi: 10.1116/1.581422
[31] Frigerio, J. et al. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing. J. Phys. D. Appl. Phys. 50, 465103 (2017). doi: 10.1088/1361-6463/aa8eca
[32] Paul D. J. et al. n-Ge on Si for mid-infrared plasmonic sensors. In Proc. of 2017 IEEE Photonics Society Summer Topical Meeting Series 125–126 (IEEE, San Juan, Puerto Rico, 2017). https://doi.org/10.1109/PHOSST.2017.8012682
[33] Mirza, M. M. et al. Nanofabrication of high aspect ratio (~50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching. J. Vac. Sci. Technol. B 30, 06FF02 (2012). doi: 10.1116/1.4755835
[34] Grupp, A. et al. Broadly tunable ultrafast pump-probe system operating at multi-kHz repetition rate. J. Opt. 20, 014005 (2018). doi: 10.1088/2040-8986/aa9b07
[35] Antipenkov, R., Varanavičius, A., Zaukevičius, A. & Piskarskas, A. P. Femtosecond Yb:KGW MOPA driven broadband NOPA as a frontend for TW few-cycle pulse systems. Opt. Express 19, 3519–3524 (2011). doi: 10.1364/OE.19.003519
[36] Junginger, F. et al. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett. 35, 2645–2647 (2010). doi: 10.1364/OL.35.002645