[1] Rack, P. D. & Holloway, P. H. The structure, device physics, and material properties of thin film electroluminescent displays. Mater. Sci. Eng: R: Rep. 21, 171–219 (1998). doi: 10.1016/S0927-796X(97)00010-7
[2] Vij D. R. Handbook of Electroluminescent Materials. Bristol, UK: IOP; 2004.
[3] Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071−1074 (2016). doi: 10.1126/science.aac5082
[4] Pikul, J. H. et al. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358, 210–214 (2017). doi: 10.1126/science.aan5627
[5] Wang, Z. G. et al. Flexible graphene-based electroluminescent devices. ACS Nano 5, 7149–7154 (2011). doi: 10.1021/nn2018649
[6] Liang, G. J., Hu, H. B., Liao, L., He, Y. B. & Ye, C. H. Highly flexible and bright electroluminescent devices based on ag nanowire electrodes and top‐emission structure. Adv. Electron Mater. 3, 1600535 (2017). doi: 10.1002/aelm.201600535
[7] Wang, J. X. et al. Extremely stretchable electroluminescent devices with ionic conductors. Adv. Mater. 28, 4490–4496 (2016). doi: 10.1002/adma.201504187
[8] Li, S., Peele, B. N., Larson, C. M., Zhao, H. C. & Shepherd, R. F. A stretchable multicolor display and touch interface using photopatterning and transfer printing. Adv. Mater. 28, 9770–9775 (2016). doi: 10.1002/adma.201603408
[9] Yang, C. H., Chen, B. H., Zhou, J. X., Chen, Y. M. & Suo, Z. G. Electroluminescence of giant stretchability. Adv. Mater. 28, 4480–4484 (2016). doi: 10.1002/adma.201504031
[10] Stauffer, F. & Tybrandt, K. Bright stretchable alternating current electroluminescent displays based on high permittivity composites. Adv. Mater. 28, 7200–7203 (2016). doi: 10.1002/adma.201602083
[11] Liang, G. J. et al. Coaxial‐structured weavable and wearable electroluminescent fibers. Adv. Electron Mater. 3, 1700401 (2017). doi: 10.1002/aelm.201700401
[12] Zhang, Z. T. et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photonics 9, 233–238 (2015). doi: 10.1038/nphoton.2015.37
[13] Xu, X. R. et al. Polar‐electrode‐bridged electroluminescent displays: 2D sensors remotely communicating optically. Adv. Mater. 29, 1703552 (2017). doi: 10.1002/adma.201703552
[14] Wang, J. X., Yan, C. Y., Chee, K. J. & Lee, P. S. Highly stretchable and self‐deformable alternating current electroluminescent devices. Adv. Mater. 27, 2876–2882 (2015). doi: 10.1002/adma.201405486
[15] Roy, N., Bruchmann, B. & Lehn, J. M. DYNAMERS: dynamic polymers as self-healing materials. Chem. Soc. Rev. 44, 3786–3807 (2015). doi: 10.1039/C5CS00194C
[16] Huynh, T. P., Sonar, P. & Haick, H. Advanced materials for use in soft self‐healing devices. Adv. Mater. 29, 1604973 (2017). doi: 10.1002/adma.201604973
[17] Bandodkar, A. J. et al. All-printed magnetically self-healing electrochemical devices. Sci. Adv. 2, e1601465 (2016). doi: 10.1126/sciadv.1601465
[18] Huang, Y. et al. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6, 10310 (2015). doi: 10.1038/ncomms10310
[19] Parida, K. et al. Highly transparent, stretchable, and self‐healing ionic‐skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 29, 1702181 (2017). doi: 10.1002/adma.201702181
[20] Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017). doi: 10.1002/adma.201606425
[21] Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017). doi: 10.1126/science.aaf3627
[22] Li, C. H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016). doi: 10.1038/nchem.2492
[23] Yanagisawa, Y., Nan, Y. L., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018). doi: 10.1126/science.aam7588
[24] Benight, S. J., Wang, C., Tok, J. B. H. & Bao, Z. N. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38, 1961–1977 (2013). doi: 10.1016/j.progpolymsci.2013.08.001
[25] Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016). doi: 10.1038/nature20102
[26] Tee, B. C. K., Wang, C., Allen, R. & Bao, Z. N. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012). doi: 10.1038/nnano.2012.192
[27] Huang, Y. et al. Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9, 6242–6251 (2015). doi: 10.1021/acsnano.5b01602
[28] Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018). doi: 10.1126/science.aao6139
[29] Jiang, H. B. et al. Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Appl. Mater. Interfaces 9, 10078–10084 (2017). doi: 10.1021/acsami.6b16195
[30] Huang, X. Y. et al. Polyhedral oligosilsesquioxane‐modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv. Funct. Mater. 23, 1824–1831 (2013). doi: 10.1002/adfm.201201824
[31] Zhu, K., Song, Q. J., Chen, H. M. & Hu, P. Thermally assisted self‐healing polyurethane containing carboxyl groups. J. Appl. Polym. Sci. 135, 45929 (2018). doi: 10.1002/app.45929
[32] Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013). doi: 10.1126/science.1240228
[33] Fischer, A. G. Electroluminescent lines in ZnS powder particles Ⅱ. Models and comparison with experience. J. Electrochem. Soc. 110, 733–748 (1963). doi: 10.1149/1.2425863