[1] Zhang, X. C., Shkurinov, A. & Zhang, Y. Extreme terahertz science. Nature Photonics 11, 16-18 (2017). doi: 10.1038/nphoton.2016.249
[2] Michael, K. et al. Security applications of terahertz technology. Proceedings of SPIE 5070, Terahertz for Military and Security Applications. Orlando: SPIE, 2003. doi: 10.1117/12.500491
[3] Woodward, R. M. et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Physics in Medicine & Biology 47, 3853-3863 (2002). doi: 10.1088/0031-9155/47/21/325
[4] Fitzgerald, A. J. et al. Terahertz pulsed imaging of human breast tumors. Radiology 239, 533-540 (2006). doi: 10.1148/radiol.2392041315
[5] Kleine-Ostmann, T. et al. Audio signal transmission over THz communication channel using semiconductor modulator. Electronics Letters 40, 124-126 (2004). doi: 10.1049/el:20040106
[6] Pendry, J. B. Negative refraction Makes a perfect lens. Physical Review Letters 85, 3966-3969 (2000). doi: 10.1103/PhysRevLett.85.3966
[7] Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788-792 (2004). doi: 10.1126/science.1096796
[8] Fang, N. et al. Sub–diffraction-limited optical imaging with a silver superlens. Science 308, 534-537 (2005). doi: 10.1126/science.1108759
[9] Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780-1782 (2006). doi: 10.1126/science.1125907
[10] Rogacheva, A. V. et al. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Physical Review Letters 97, 177401 (2006). doi: 10.1103/PhysRevLett.97.177401
[11] Gansel J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513-1515 (2009). doi: 10.1126/science.1177031
[12] Shi, Z. C. et al. Random composites of nickel networks supported by porous alumina toward double negative materials. Advanced Materials 24, 2349-2352 (2012). doi: 10.1002/adma.201200157
[13] Wu, H. K. et al. Magnetic negative permittivity with dielectric resonance in random Fe3O4@graphene-phenolic resin composites. Advanced Composites and Hybrid Materials 1, 168-176 (2018). doi: 10.1007/s42114-017-0014-1
[14] Wu, H. K., Huang, X. S. & Qian, L. Recent progress on the metacomposites with carbonaceous fillers. Engineered Science 2, 17-25 (2018). doi: 10.30919/es8d656
[15] Li, T. et al. Achieving better greenhouse effect than glass: visibly transparent and low emissivity metal-polymer hybrid metamaterials. ES Energy & Environment 5, 102-107 (2019). doi: 10.30919/esee8c325
[16] Jia, Y. L. et al. Thermal modulation of plasmon induced transparency in graphene metamaterial. ES Energy & Environment 7, 4-11 (2020). doi: 10.30919/esee8c338
[17] Lin, W. X., Huang, S. P. & Ren, J. Anomalous transient heat conduction in fractal metamaterials. ES Energy & Environment 7, 56-64 (2020). doi: 10.1007/978-3-540-33471-2_14
[18] Qu, Y. P. et al. Simultaneous epsilon-negative and mu-negative property of Ni/CaCu3Ti4O12 metacomposites at radio-frequency region. Journal of Alloys and Compounds 847, 156526 (2020). doi: 10.1016/j.jallcom.2020.156526
[19] Sun, K. et al. Hydrosoluble graphene/polyvinyl alcohol membranous composites with negative permittivity behavior. Macromolecular Materials and Engineering 305, 1900709 (2020). doi: 10.1002/mame.201900709
[20] Sun, K. et al. Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior. Physical Chemistry Chemical Physics 22, 5114-5122 (2020). doi: 10.1039/C9CP06196G
[21] Chen, X. Z. et al. Dual-polarity plasmonic metalens for visible light. Nature Communications 3, 1198 (2012). doi: 10.1038/ncomms2207
[22] Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology 10, 937-943 (2015). doi: 10.1038/nnano.2015.186
[23] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644
[24] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nature Communications 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[25] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology 13, 220-226 (2018). doi: 10.1038/s41565-017-0034-6
[26] Cheng, K. Y. et al. Realizing broadband transparency via manipulating the hybrid coupling modes in metasurfaces for high-efficiency metalens. Advanced Optical Materials 7, 1900016 (2019). doi: 10.1002/adom.201900016
[27] Jiang, S. C. et al. Controlling the polarization state of light with a dispersion-free metastructure. Physical Review X 4, 021026 (2014). doi: 10.1103/physrevx.4.021026
[28] Pfeiffer, C. et al. Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica 3, 427-432 (2016). doi: 10.1364/OPTICA.3.000427
[29] Yue, F. Y. et al. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558-1563 (2016). doi: 10.1021/acsphotonics.6b00392
[30] Yue, F. Y. et al. Multichannel polarization‐controllable superpositions of orbital angular momentum states. Advanced Materials 29, 1603838 (2017). doi: 10.1002/adma.201603838
[31] Mehmood, M. Q. et al. Visible‐frequency metasurface for structuring and spatially multiplexing optical vortices. Advanced Materials 28, 2533-2539 (2016). doi: 10.1002/adma.201504532
[32] Devlin, R. C. et al. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896-901 (2017). doi: 10.1126/science.aao5392
[33] Jiang, Z. H. et al. A single noninterleaved metasurface for high-capacity and flexible mode multiplexing of higher-order poincaré sphere beams. Advanced Materials 32, 1903983 (2020). doi: 10.1002/adma.201903983
[34] Fu, X. J. et al. Terahertz beam steering technologies: from phased arrays to field-programmable metasurfaces. Advanced Optical Materials 8, 1900628 (2020). doi: 10.1002/adom.201900628
[35] Liu, S. et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Advanced Science 3, 1600156 (2016). doi: 10.1002/advs.201600156
[36] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nature Communications 4, 2808 (2013). doi: 10.1038/ncomms3808
[37] Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Letters 14, 225-230 (2014). doi: 10.1021/nl403811d
[38] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nature Communications 6, 8241 (2015). doi: 10.1038/ncomms9241
[39] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology 10, 308-312 (2015). doi: 10.1038/nnano.2015.2
[40] Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Science Advances 2, e1601102 (2016). doi: 10.1126/sciadv.1601102
[41] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[42] Falcone, F. et al. Babinet principle applied to the design of metasurfaces and metamaterials. Physical Review Letters 93, 197401 (2004). doi: 10.1103/PhysRevLett.93.197401
[43] Zhang, X. Q. et al. Broadband terahertz wave deflection based on C‐shape complex metamaterials with phase discontinuities. Advanced Materials 25, 4567-4572 (2013). doi: 10.1002/adma.201204850
[44] Zhang, L., Zhang, M. & Liang, H. W. Realization of full control of a terahertz wave using flexible metasurfaces. Advanced Optical Materials 5, 1700486 (2017). doi: 10.1002/adom.201700486
[45] Wang, X. et al. Simultaneous realization of anomalous reflection and transmission at two frequencies using Bi-functional metasurfaces. Scientific Reports 8, 1876 (2018). doi: 10.1038/s41598-018-20315-2
[46] Zeng, H. X. et al. Terahertz dual-polarization beam splitter via an anisotropic matrix metasurface. IEEE Transactions on Terahertz Science and Technology 9, 491-497 (2019). doi: 10.1109/TTHZ.2019.2927890
[47] Zeng, H. X. et al. Maximizing beam-scanning angle in an expected bandwidth based on terahertz metasurface with dual-mode resonance. Applied Physics Express 12, 095501 (2019). doi: 10.7567/1882-0786/ab38a2
[48] Liu, S. et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light: Science & Applications 5, e16076 (2016). doi: 10.1038/lsa.2016.76
[49] Grady, N. K. et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304-1307 (2013). doi: 10.1126/science.1235399
[50] Liu, S. et al. Anomalous refraction and nondiffractive Bessel-beam generation of terahertz waves through transmission-type coding metasurfaces. ACS Photonics 3, 1968-1977 (2016). doi: 10.1021/acsphotonics.6b00515
[51] Yang, Q. L. et al. Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control. Advanced Optical Materials 5, 1601084 (2017). doi: 10.1002/adom.201601084
[52] Liu, S. et al. Free‐standing metasurfaces for high‐efficiency transmitarrays for controlling terahertz waves. Advanced Optical Materials 4, 384-390 (2016). doi: 10.1002/adom.201500519
[53] Zhao, R. Q. et al. High-efficiency Huygens’ metasurface for terahertz wave manipulation. Optics Letters 44, 3482-3485 (2019). doi: 10.1364/OL.44.003482
[54] Fan, J. P. & Cheng, Y. Z. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave. Journal of Physics D: Applied Physics 53, 025109 (2020). doi: 10.1088/1361-6463/ab4d76
[55] Zhang, H. F. et al. High‐efficiency dielectric metasurfaces for polarization‐dependent terahertz wavefront manipulation. Advanced Optical Materials 6, 1700773 (2018). doi: 10.1002/adom.201700773
[56] Headland, D. et al. Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface. ACS Photonics 3, 1019-1026 (2016). doi: 10.1021/acsphotonics.6b00102
[57] Yang, Q. L. et al. Mie‐resonant membrane huygens' metasurfaces. Advanced Functional Materials 30, 1906851 (2020). doi: 10.1002/adfm.201906851
[58] Park, S. G. et al. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial. Applied Physics Letters 105, 091101 (2014). doi: 10.1063/1.4894054
[59] Hong, X. R. et al. A beam deflector with dielectric metasurfaces in the terahertz region. Laser Physics 30, 016204 (2020). doi: 10.1088/1555-6611/ab5576
[60] Ma, Z. J. et al. Terahertz all-dielectric magnetic mirror metasurfaces. ACS Photonics 3, 1010-1018 (2016). doi: 10.1021/acsphotonics.6b00096
[61] Tian, J. Y. et al. All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region. Optics Express 25, 24068-24080 (2017). doi: 10.1364/OE.25.024068
[62] Liu, L. X. et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Advanced Materials 26, 5031-5036 (2014). doi: 10.1002/adma.201401484
[63] Ding, J. et al. Dual-wavelength terahertz metasurfaces with independent phase and amplitude control at each wavelength. Scientific Reports 6, 34020 (2016). doi: 10.1038/srep34020
[64] Xu, Q. et al. Efficient metacoupler for complex surface plasmon launching. Advanced Optical Materials 6, 1701117 (2018). doi: 10.1002/adom.201701117
[65] Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Letters 12, 5750-5755 (2012). doi: 10.1021/nl303031j
[66] Zhang, X. Q. et al. Anomalous surface wave launching by handedness phase control. Advanced Materials 27, 7123-7129 (2015). doi: 10.1002/adma.201502008
[67] Liu, Z. C. et al. High‐performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces. Advanced Functional Materials 25, 5428-5434 (2015). doi: 10.1002/adfm.201502046
[68] Luo, J. et al. Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces. Optics Letters 39, 2229-2231 (2014). doi: 10.1364/OL.39.002229
[69] Jiang, X. et al. All-dielectric metalens for terahertz wave imaging. Optics Express 26, 14132-14142 (2018). doi: 10.1364/OE.26.014132
[70] Kenney, M. et al. Pancharatnam-Berry phase induced spin-selective transmission in herringbone dielectric metamaterials. Advanced Materials 28, 9567-9572 (2016). doi: 10.1002/adma.201603460
[71] Li, S. H., Li, J. S. & Sun, J. Z. Terahertz wave front manipulation based on Pancharatnam-Berry coding metasurface. Optical Materials Express 9, 1118-1127 (2019). doi: 10.1364/OME.9.001118
[72] Wang, Q. et al. A broadband metasurface‐based terahertz flat‐lens array. Advanced Optical Materials 3, 779-785 (2015). doi: 10.1002/adom.201400557
[73] Jia, D. L. et al. Transmissive terahertz metalens with full phase control based on a dielectric metasurface. Optics Letters 42, 4494-4497 (2017). doi: 10.1364/OL.42.004494
[74] He, J. W. et al. A broadband terahertz ultrathin multi-focus lens. Scientific Reports 6, 28800 (2016). doi: 10.1038/srep28800
[75] Jia, D. L. et al. Multifocal terahertz lenses realized by polarization-insensitive reflective metasurfaces. Applied Physics Letters 114, 101105 (2019). doi: 10.1063/1.5088247
[76] Wang, S. et al. Spin-selected focusing and imaging based on metasurface lens. Optics Express 23, 26434-26441 (2015). doi: 10.1364/OE.23.026434
[77] Kuznetsov, S. A. et al. Planar holographic metasurfaces for terahertz focusing. Scientific Reports 5, 7738 (2015). doi: 10.1038/srep07738
[78] Yang, Q. L. et al. Efficient flat metasurface lens for terahertz imaging. Optics Express 22, 25931-25939 (2014). doi: 10.1364/OE.22.025931
[79] Chang, C. C. et al. Demonstration of a highly efficient terahertz flat lens employing tri-layer metasurfaces. Optics Letters 42, 1867-1870 (2017). doi: 10.1364/OL.42.001867
[80] Zhao, H. et al. High-efficiency terahertz devices based on cross-polarization converter. Scientific Reports 7, 17882 (2017). doi: 10.1038/s41598-017-18013-6
[81] Wang, J. C. et al. Terahertz metalens for multifocusing bidirectional arrangement in different dimensions. IEEE Photonics Journal 11, 4600311 (2019). doi: 10.1109/jphot.2019.2890903
[82] Ding, J. et al. Multiwavelength metasurfaces based on single‐layer dual‐wavelength meta‐Atoms: toward complete phase and amplitude modulations at two wavelengths. Advanced Optical Materials 5, 1700079 (2017). doi: 10.1002/adom.201700079
[83] Cheng, Q. Q. et al. Broadband achromatic metalens in terahertz regime. Science Bulletin 64, 1525-1531 (2019). doi: 10.1016/j.scib.2019.08.004
[84] Zang, X. F. et al. Polarization-controlled terahertz super-focusing. Applied Physics Letters 113, 071102 (2018). doi: 10.1063/1.5039539
[85] Chen, H. et al. Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens. Optics Express 26, 29817-29825 (2018). doi: 10.1364/OE.26.029817
[86] Zhang, X. T. et al. Superresolution focusing using metasurface with circularly arranged nanoantennas. Plasmonics 13, 147-153 (2018). doi: 10.1007/s11468-016-0494-9
[87] Hu, D. et al. Ultrathin terahertz planar elements. Advanced Optical Materials 1, 186-191 (2013). doi: 10.1002/adom.201200044
[88] Zang, X. F. et al. A multi‐foci metalens with polarization‐rotated focal points. Laser & Photonics Reviews 13, 1900182 (2019). doi: 10.1002/lpor.201900182
[89] Zang, X. F. et al. Polarization‐insensitive metalens with extended focal depth and longitudinal high‐tolerance imaging. Advanced Optical Materials 8, 1901342 (2020). doi: 10.1002/adom.201901342
[90] Jiang, X. Y. et al. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Optics Express 21, 30030-30038 (2013). doi: 10.1364/OE.21.030030
[91] Wang, Q. et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Scientific Reports 6, 32867 (2016). doi: 10.1038/srep32867
[92] Wang, Q. et al. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics 5, 599-606 (2018). doi: 10.1021/acsphotonics.7b01173
[93] Xu, Q. et al. Polarization‐controlled surface plasmon holography. Laser & Photonics Reviews 11, 1600212 (2017). doi: 10.1002/lpor.201600212
[94] Wang, B. et al. Wavelength de-multiplexing metasurface hologram. Scientific Reports 6, 35657 (2016). doi: 10.1038/srep35657
[95] Wang, Q. et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light: Science & Applications 7, 25 (2018). doi: 10.1038/s41377-018-0019-8
[96] Wang, Q. et al. Polarization and frequency multiplexed terahertz meta‐holography. Advanced Optical Materials 5, 1700277 (2017). doi: 10.1002/adom.201700277
[97] Zhao, H. et al. Metasurface hologram for multi-image hiding and seeking. Physical Review Applied 12, 054011 (2019). doi: 10.1103/PhysRevApplied.12.054011
[98] Guo, J. Y. et al. Reconfigurable terahertz metasurface pure phase holograms. Advanced Optical Materials 7, 1801696 (2019). doi: 10.1002/adom.201801696
[99] He, J. W. et al. Meta-hologram for three-dimensional display in terahertz waveband. Microelectronic Engineering 220, 111151 (2020). doi: 10.1016/j.mee.2019.111151
[100] Xu, S. T. et al. Terahertz polarization mode conversion in compound metasurface. Applied Physics Letters 111, 031107 (2017). doi: 10.1063/1.4994156
[101] Chiang, Y. J. & Yen, T. J. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Applied Physics Letters 102, 011129 (2013). doi: 10.1063/1.4774300
[102] Cong, L. Q. et al. A perfect metamaterial polarization rotator. Applied Physics Letters 103, 171107 (2013). doi: 10.1063/1.4826536
[103] Yang, Q. L. et al. Broadband terahertz rotator with an all-dielectric metasurface. Photonics Research 6, 1056-1061 (2018). doi: 10.1364/PRJ.6.001056
[104] Zang, X. F. et al. Metasurface for multi-channel terahertz beam splitters and polarization rotators. Applied Physics Letters 112, 171111 (2018). doi: 10.1063/1.5028401
[105] Lv, T. T. et al. Dual-band dichroic asymmetric transmission of linearly polarized waves in terahertz chiral metamaterial. Nanophotonics 9, 3235-3242 (2020). doi: 10.1515/nanoph-2019-0507
[106] Rao, Y. F. et al. Asymmetric transmission of linearly polarized waves based on Mie resonance in all-dielectric terahertz metamaterials. Optics Express 28, 29855-29864 (2020). doi: 10.1364/OE.404912
[107] Lv, T. T. et al. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Scientific Reports 6, 23186 (2016). doi: 10.1038/srep23186
[108] Cong, L. Q. et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry. Advanced Optical Materials 3, 1176-1183 (2015). doi: 10.1002/adom.201500100
[109] Cong, L. Q. et al. Highly flexible broadband terahertz metamaterial quarter‐wave plate. Laser & Photonics Reviews 8, 626-632 (2014). doi: 10.1002/lpor.201300205
[110] Nouman, M. T., Hwang, J. H. & Jang, J. H. Ultrathin terahertz quarter-wave plate based on split ring resonator and wire grating hybrid metasurface. Scientific Reports 6, 39062 (2016). doi: 10.1038/srep39062
[111] Zang, X. F. et al. Dual-band superposition induced broadband terahertz linear-to-circular polarization converter. Journal of the Optical Society of America B 35, 950-957 (2018). doi: 10.1364/JOSAB.35.000950
[112] Wang, D. C. et al. Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials. Applied Physics Letters 113, 201103 (2018). doi: 10.1063/1.5063603
[113] Mo, W. C. et al. Ultrathin flexible terahertz polarization converter based on metasurfaces. Optics Express 24, 13621-13627 (2016). doi: 10.1364/OE.24.013621
[114] Chang, C. C. et al. Broadband linear-to-circular polarization conversion enabled by birefringent off-resonance reflective metasurfaces. Physical Review Letters 123, 237401 (2019). doi: 10.1103/PhysRevLett.123.237401
[115] Lee, W. S. L. et al. Dielectric-resonator metasurfaces for broadband terahertz quarter- and half-wave mirrors. Optics Express 26, 14392-14406 (2018). doi: 10.1364/OE.26.014392
[116] Sueda, K. et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Optics Express 12, 3548-3553 (2004). doi: 10.1364/OPEX.12.003548
[117] Karimi, E. et al. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Applied Physics Letters 94, 231124 (2009). doi: 10.1063/1.3154549
[118] Beijersbergen, M. W. et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications 96, 123-132 (1993). doi: 10.1016/0030-4018(93)90535-D
[119] Biener, G. et al. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Optics Letters 27, 1875-1877 (2002). doi: 10.1364/OL.27.001875
[120] He, J. W. et al. Generation and evolution of the terahertz vortex beam. Optics Express 21, 20230-20239 (2013). doi: 10.1364/OE.21.020230
[121] Zhang, H. F. et al. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime. Photonics Research 6, 24-29 (2018). doi: 10.1364/PRJ.6.000024
[122] Dharmavarapu, R. et al. Dielectric cross-shaped-resonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths. Nanophotonics 8, 1263-1270 (2019). doi: 10.1515/nanoph-2019-0112
[123] Zhao, H. et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics 5, 1726-1732 (2018). doi: 10.1021/acsphotonics.7b01149
[124] Zang, X. F. et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Advanced Optical Materials 7, 1801328 (2019). doi: 10.1002/adom.201801328
[125] Xu, Q. et al. Coupling‐Mediated selective spin‐to‐plasmonic‐orbital angular momentum conversion. Advanced Optical Materials 7, 1900713 (2019). doi: 10.1002/adom.201900713
[126] Wang, S., Wang, X. K. & Zhang, Y. Simultaneous Airy beam generation for both surface plasmon polaritons and transmitted wave based on metasurface. Optics Express 25, 23589-23596 (2017). doi: 10.1364/OE.25.023589
[127] He, J. W. et al. Abruptly autofocusing terahertz waves with meta-hologram. Optics Letters 41, 2787-2790 (2016). doi: 10.1364/OL.41.002787
[128] Guo, J. Y. et al. Generation of radial polarized Lorentz beam with single layer metasurface. Advanced Optical Materials 6, 1700925 (2018). doi: 10.1002/adom.201700925
[129] Kim, T. T. et al. Amplitude modulation of anomalously refracted terahertz waves with gated‐graphene metasurfaces. Advanced Optical Materials 6, 1700507 (2018). doi: 10.1002/adom.201700507
[130] Ding, F., Zhong, S. M. & Bozhevolnyi, S. I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Advanced Optical Materials 6, 1701204 (2018). doi: 10.1002/adom.201701204
[131] Hashemi, M. R. M. et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Scientific Reports 6, 35439 (2016). doi: 10.1038/srep35439
[132] Li, J. et al. All‐optical switchable vanadium dioxide integrated coding metasurfaces for wavefront and polarization manipulation of terahertz beams. Advanced Theory and Simulations 3, 1900183 (2020). doi: 10.1002/adts.201900183
[133] Cong, L. Q. et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light: Science & Applications 7, 28 (2018). doi: 10.1038/s41377-018-0024-y
[134] Su, X. Q. et al. Active metasurface terahertz deflector with phase discontinuities. Optics Express 23, 27152-27158 (2015). doi: 10.1364/OE.23.027152
[135] Zhang, H. F. et al. Coherent control of optical spin‐to‐orbital angular momentum conversion in metasurface. Advanced Materials 29, 1604252 (2017). doi: 10.1002/adma.201604252
[136] Cong, L. Q. & Singh, R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Advanced Materials 32, 2001418 (2020). doi: 10.1002/adma.202001418
[137] Fan, K. B. et al. Phototunable dielectric Huygens’ metasurfaces. Advanced Materials 30, 1800278 (2018). doi: 10.1002/adma.201800278
[138] Du, Z. Y. et al. Tunable beam deflector by mutual motion of cascaded bilayer metasurfaces. Journal of Optics 21, 115101 (2019). doi: 10.1088/2040-8986/ab3e7a
[139] Wang, T. et al. Thermally switchable terahertz wavefront metasurface modulators based on the insulator-to-metal transition of vanadium dioxide. Optics Express 27, 20347-20357 (2019). doi: 10.1364/OE.27.020347
[140] Liu, Z. & Bai, B. F. Ultra-thin and high-efficiency graphene metasurface for tunable terahertz wave manipulation. Optics Express 25, 8584-8592 (2017). doi: 10.1364/OE.25.008584
[141] Liu, W. G. et al. Graphene-enabled electrically controlled terahertz meta-lens. Photonics Research 6, 703-708 (2018). doi: 10.1364/PRJ.6.000703
[142] Ullah, N. et al. Efficient tuning of linearly polarized terahertz focus by graphene-integrated metasurface. Journal of Physics D: Applied Physics 53, 205103 (2020). doi: 10.1088/1361-6463/ab7623
[143] Ullah, N. et al. Gate-controlled terahertz focusing based on graphene-loaded metasurface. Optics Express 28, 2789-2798 (2020). doi: 10.1364/OE.381765
[144] Liu, X. B. et al. Thermally dependent dynamic meta‐holography using a vanadium dioxide integrated metasurface. Advanced Optical Materials 7, 1900175 (2019). doi: 10.1002/adom.201900175
[145] Lou, J. et al. Multifield-inspired tunable carrier effects based on ferroelectric-silicon PN heterojunction. Advanced Electronic Materials 6, 1900795 (2020). doi: 10.1002/aelm.201900795
[146] Fan, Y. C. et al. Tunable terahertz meta-surface with graphene cut-wires. ACS Photonics 2, 151-156 (2015). doi: 10.1021/ph500366z
[147] Fan, Y. C. et al. Graphene plasmonics: a platform for 2D optics. Advanced Optical Materials 7, 1800537 (2019). doi: 10.1002/adom.201800537
[148] Zhu, W. et al. Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5. Nanoscale 12, 8758-8767 (2020). doi: 10.1039/C9NR09889E
[149] Cui, T. J. et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications 3, e218 (2014). doi: 10.1038/lsa.2014.99
[150] Gao, L. H. et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light: Science & Applications 4, e324 (2015). doi: 10.1038/lsa.2015.97
[151] Dai, J. Y. et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light: Science & Applications 7, 90 (2018). doi: 10.1038/s41377-018-0092-z
[152] Li, L. L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nature Communications 8, 197 (2017). doi: 10.1038/s41467-017-00164-9
[153] Li, L. L. et al. Machine-learning reprogrammable metasurface imager. Nature Communications 10, 1082 (2019). doi: 10.1038/s41467-019-09103-2
[154] Zhang, L. et al. Breaking reciprocity with space-time-coding digital metasurfaces. Advanced Materials 31, 1904069 (2019). doi: 10.1002/adma.201904069
[155] Ma, Q. et al. Smart metasurface with self-adaptively reprogrammable functions. Light: Science & Applications 8, 98 (2019). doi: 10.1038/s41377-019-0205-3
[156] Wang, H. F. et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nature Photonics 2, 501-505 (2008). doi: 10.1038/nphoton.2008.127
[157] Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nature Photonics 12, 540-547 (2018). doi: 10.1038/s41566-018-0224-2
[158] Mao, Q. et al. Convolutional neural network model based on terahertz imaging for integrated circuit defect detections. Optics Express 28, 5000-5012 (2020). doi: 10.1364/OE.384146
[159] Yao, B. S. et al. Dual-layered metasurfaces for asymmetric focusing. Photonics Research 8, 830-843 (2020). doi: 10.1364/PRJ.387672
[160] Zhou, T. et al. Spin-independent metalens for helicity–multiplexing of converged vortices and cylindrical vector beams. Optics Letters 45, 5941-5944 (2020). doi: 10.1364/OL.404436
[161] Zang, X. F. et al. Geometric metasurface for multiplexing terahertz plasmonic vortices. Applied Physics Letters 117, 171106 (2020). doi: 10.1063/5.0027950
[162] Zhang, Q. et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light. Advanced Optical Materials 8, 1901885 (2020). doi: 10.1002/adom.201901885
[163] Jiang, J. Q. & Fan, J. A. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Letters 19, 5366-5372 (2019). doi: 10.1021/acs.nanolett.9b01857
[164] Liu, D. J. et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365-1369 (2018). doi: 10.1021/acsphotonics.7b01377
[165] Li, Z. Y. et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nature Nanotechnology 12, 675-683 (2017). doi: 10.1038/nnano.2017.50
[166] Guo, X. X. et al. Molding free-space light with guided wave-driven metasurfaces. Science Advances 6, eabb4142 (2020). doi: 10.1126/sciadv.abb4142