[1] Beard, P. Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011). doi: 10.1098/rsfs.2011.0028
[2] Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016). doi: 10.1038/nmeth.3925
[3] Oraevsky, A. A. & Karabutov, A. A. in Biomedical Photonics Handbook (eds Vo-Dinh, T) 1–34 (CRC Press, Boca Raton, FL, 2003).
[4] Ntziachristos, V. & Razansky, D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110, 2783–2794 (2010). doi: 10.1021/cr9002566
[5] Valluru, K. S., Wilson, K. E. & Willmann, J. K. Photoacoustic imaging in oncology: translational preclinical and early clinical experience. Radiology 280, 332–349 (2016). doi: 10.1148/radiol.16151414
[6] Zackrisson, S., Van De Ven, S. M. W. Y. & Gambhir, S. S. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 74, 979–1004 (2014). doi: 10.1158/0008-5472.CAN-13-2387
[7] Neuschler, E. I. et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists. Radiology 287, 398–412 (2018). doi: 10.1148/radiol.2017172228
[8] Knieling, F. et al. Multispectral optoacoustic tomography for assessment of Crohn's disease activity. N. Engl. J. Med. 376, 1292–1294 (2017). doi: 10.1056/NEJMc1612455
[9] Stoffels, I. et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl. Med 7, 317ra199 (2015). doi: 10.1126/scitranslmed.aad1278
[10] Zhou, Y., Xing, W. X., Maslov, K. I., Cornelius, L. A. & Wang, L. V. Handheld photoacoustic microscopy to detect melanoma depth in vivo. Opt. Lett. 39, 4731–4734 (2014). doi: 10.1364/OL.39.004731
[11] Zabihian, B. et al. In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies. Biomed. Opt. Express 6, 3163–3178 (2015). doi: 10.1364/BOE.6.003163
[12] Aguirre, J. et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng. 1, 0068 (2017). doi: 10.1038/s41551-017-0068
[13] Wang, B. et al. Intravascular photoacoustic imaging. IEEE J. Sel. Top. Quantum Electron 16, 588–599 (2010). doi: 10.1109/JSTQE.2009.2037023
[14] Hsieh, B. Y., Chen, S. L., Ling, T., Guo, L. J. & Li, P. C. Integrated intravascular ultrasound and photoacoustic imaging scan head. Opt. Lett. 35, 2892–2894 (2010). doi: 10.1364/OL.35.002892
[15] Jansen, K., Van Der Steen, A. F. W., Van Beusekom, H. M. M., Oosterhuis, J. W. & Van Soest, G. Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt. Lett. 36, 597–599 (2011). doi: 10.1364/OL.36.000597
[16] Yang, J. M. et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18, 1297–1302 (2012). doi: 10.1038/nm.2823
[17] Dong, B. Q., Chen, S. Y., Zhang, Z., Sun, C. & Zhang, H. F. Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications. Opt. Lett. 39, 4372–4375 (2014). doi: 10.1364/OL.39.004372
[18] Yang, J. M. et al. Catheter-based photoacoustic endoscope. J. Biomed. Opt. 19, 066001 (2014). doi: 10.1117/1.JBO.19.6.066001
[19] Van Soest, G., Regar, E. & Van Der Steen, A. F. M. Photonics in cardiovascular medicine. Nat. Photonics 9, 626–629 (2015). doi: 10.1038/nphoton.2015.177
[20] He, H. L., Wissmeyer, G., Ovsepian, S. V., Buehler, A. & Ntziachristos, V. Hybrid optical and acoustic resolution optoacoustic endoscopy. Opt. Lett. 41, 2708–2710 (2016). doi: 10.1364/OL.41.002708
[21] Wu, M. et al. Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second. Biomed. Opt. Express 8, 943–953 (2017). doi: 10.1364/BOE.8.000943
[22] Senat, M. V. et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N. Engl. J. Med. 351, 136–144 (2004). doi: 10.1056/NEJMoa032597
[23] Iwashita, T. et al. Newly‐developed, forward‐viewing echoendoscope: a comparative pilot study to the standard echoendoscope in the imaging of abdominal organs and feasibility of endoscopic ultrasound‐guided interventions. J. Gastroenterol. Hepatol. 27, 362–367 (2012). doi: 10.1111/j.1440-1746.2011.06923.x
[24] Våpenstad, C. et al. Laparoscopic ultrasound: a survey of its current and future use, requirements, and integration with navigation technology. Surg. Endosc. 24, 2944–2953 (2010). doi: 10.1007/s00464-010-1135-6
[25] Zhang, E., Laufer, J. & Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 47, 561–577 (2008). doi: 10.1364/AO.47.000561
[26] Jathoul, A. P. et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9, 239–246 (2015). doi: 10.1038/nphoton.2015.22
[27] Feng, S. M. & Winful, H. G. Physical origin of the Gouy phase shift. Opt. Lett. 26, 485–487 (2001). doi: 10.1364/OL.26.000485
[28] Varu, H. The Optical Modelling and Design of Fabry Perot Interferometer Sensors for Ultrasound Detection. (PhD thesis, University College London, London, 2014).
[29] Ansari, R., Zhang, E., Mathews, S., Desjardins, A. E. & Beard, P. C. Photoacoustic endoscopy probe using a coherent fibre optic bundle. Proceedings of SPIE 9539, Opto-Acoustic Methods and Applications in Biophotonics II. 16 July 2015, p953905 (Munich, Germany. SPIE, Munich, Germany, 2015).
[30] Guggenheim, J. A., Zhang, E. Z. & Beard, P. C. A method for measuring the directional response of ultrasound receivers in the range 0.3-80 MHz using a laser-generated ultrasound source. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64, 1857–1863 (2017). doi: 10.1109/TUFFC.2017.2758173
[31] Beard, P. C., Perennes, F. & Mills, T. N. Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999). doi: 10.1109/58.808883
[32] Treeby, B. E., Zhang, E. Z. & Cox, B. T. Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Probl. 26, 115003 (2010). doi: 10.1088/0266-5611/26/11/115003
[33] Treeby, B. E. & Cox, B. T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15, 021314 (2010). doi: 10.1117/1.3360308
[34] Xu, M. H. & Wang, L. V. Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys. Rev. E 67, 056605 (2003). doi: 10.1103/PhysRevE.67.056605
[35] Cox, B. T., Arridge, S. R. & Beard, P. C. Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity. Inverse Probl. 23, S95–S112 (2007). doi: 10.1088/0266-5611/23/6/S08
[36] International Electrotechnical Commission, Safety of laser products—part 1: Equipment Classification and Requirements (Geneva, Switzerland: IEC-60825-1, 2014).
[37] Makanya, A. N., Styp-Rekowska, B., Dimova, I. & Djonov, V. in Vascular Morphogenesis: Methods and Protocols (eds Ribatti, D.) 185–196 (Humana Press, New York, NY, 2015).
[38] Kida, M. et al. Role of a forward-viewing echoendoscope in fine-needle aspiration. Gastrointest. Interv. 2, 12–16 (2013). doi: 10.1016/j.gii.2013.03.002
[39] Matsuzaki, I. et al. Forward-viewing versus oblique-viewing echoendoscopes in the diagnosis of upper GI subepithelial lesions with EUS-guided FNA: a prospective, randomized, crossover study. Gastrointest. Endosc. 82, 287–295 (2015). doi: 10.1016/j.gie.2014.12.051
[40] Yaseen, M. A. et al. Optoacoustic imaging of the prostate: development toward image-guided biopsy. J. Biomed. Opt. 15, 021310 (2010). doi: 10.1117/1.3333548
[41] Ansari, R., Zhang, E., Desjardins, A. E. & Beard, P. C. All-optical endoscopic probe for high-resolution 3D photoacoustic tomography. Proceedings of SPIE 10064, Photons Plus Ultrasound: Imaging and Sensing 2017. 23 March 2017, p100641W (San Francisco, California. SPIE, San Francisco, California, 2017).
[42] Huynh, N., Ogunlade, O., Zhang, E., Cox, B. & Beard, P. Photoacoustic imaging using an 8-beam Fabry-Pérot scanner. Proceedings of SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing 2016. 18 March 2016, p97082L (San Francisco, California. SPIE, San Francisco, California, 2016)
[43] Huynh, N. et al. Sub-sampled Fabry-Perot photoacoustic scanner for fast 3D imaging. Proceedings of SPIE 10064, Photons Plus Ultrasound: Imaging and Sensing 2017. 23 March 2017, p100641Y (San Francisco, California. SPIE, San Francisco, California, 2017)
[44] Huynh, N. et al. Single-pixel optical camera for video rate ultrasonic imaging. Optica 3, 26–29 (2016). doi: 10.1364/OPTICA.3.000026
[45] Arridge, S. et al. Accelerated high-resolution photoacoustic tomography via compressed sensing. Phys. Med. Biol. 61, 8908–8940 (2016). doi: 10.1088/1361-6560/61/24/8908
[46] Hauptmann, A. et al. Model-based learning for accelerated, limited-view 3-D photoacoustic tomography. IEEE Trans. Med. Imaging 37, 1382–1393 (2018). doi: 10.1109/TMI.2018.2820382
[47] Laufer, J. G. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17, 056016 (2012). doi: 10.1117/1.JBO.17.5.056016
[48] Guggenheim, J. A. et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics 11, 714–719 (2017). doi: 10.1038/s41566-017-0027-x
[49] Finlay, M. C. et al. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. Light Sci. Appl. 6, e17103 (2017).