[1] Ni, X. J., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi: 10.1038/ncomms3807
[2] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[3] Liu, L. X. et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26, 5031-5036 (2014). doi: 10.1002/adma.201401484
[4] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308-312 (2015). doi: 10.1038/nnano.2015.2
[5] Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008). doi: 10.1103/PhysRevLett.100.207402
[6] Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342-2348 (2010). doi: 10.1021/nl9041033
[7] Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012). doi: 10.1038/ncomms1758
[8] Watts, C. M., Liu, X. L. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98-OP120 (2012).
[9] Akselrod, G. M. et al. Large‐area metasurface perfect absorbers from visible to near‐infrared. Adv. Mater. 27, 8028-8034 (2015). doi: 10.1002/adma.201503281
[10] Sounas, D. L., Caloz, C. & Alù, A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4, 2407 (2013). doi: 10.1038/ncomms3407
[11] Popa, B. I. & Cummer, S. A. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 5, 3398 (2014). doi: 10.1038/ncomms4398
[12] Sievenpiper, D. F., Schaffner, J. H., Song, H. J., Loo, R. Y. & Tangonan, H. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propag. 51, 2713-2722 (2003). doi: 10.1109/TAP.2003.817558
[13] Yao, Y. et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14, 6526-6532 (2014). doi: 10.1021/nl503104n
[14] Dabidian, N. et al. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces. ACS Photonics 2, 216-227 (2015). doi: 10.1021/ph5003279
[15] Chen, K. et al. A reconfigurable active Huygens' metalens. Adv. Mater. 29, 1606422 (2017). doi: 10.1002/adma.201606422
[16] Chen, J. N. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77-81 (2012). doi: 10.1038/nature11254
[17] Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165-168 (2015). doi: 10.1126/science.aab2051
[18] Lee, J. et al. Ultrafast electrically tunable polaritonic metasurfaces. Adv. Opt. Mater. 2, 1057-1063 (2014). doi: 10.1002/adom.201400185
[19] Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014). doi: 10.1038/lsa.2014.99
[20] Della Giovampaola, C. & Engheta, N. Digital metamaterials. Nat. Mater. 13, 1115-1121 (2014). doi: 10.1038/nmat4082
[21] Cui, T. J., Liu, S., & Li, L. L. Information entropy of coding metasurface. Light Sci. Appl. 5, e16172 (2016). https://www.nature.com/articles/lsa2016172
[22] Cui, T. J. Microwave metamaterials. Natl. Sci. Rev. 5, 134-136 (2018). doi: 10.1093/nsr/nwx133
[23] Cui, T. J., Liu, S. & Zhang, L. Information metamaterials and metasurfaces. J. Mater. Chem. C 5, 3644-3668 (2017). doi: 10.1039/C7TC00548B
[24] Cui, T. J. Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves. J. Opt. 19, 084004 (2017). doi: 10.1088/2040-8986/aa7009
[25] Debogovic, T. & Perruisseau-Carrier, J. Low loss MEMS-reconfigurable 1-bit reflectarray cell with dual-linear polarization. IEEE Trans. Antennas Propag. 62, 5055-5060 (2014). doi: 10.1109/TAP.2014.2344100
[26] Wan, X., Qi, M. Q., Chen, T. Y. & Cui, T. J. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface. Sci. Rep. 6, 20663 (2016). doi: 10.1038/srep20663
[27] Li, Y. B. et al. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging. Sci. Rep. 6, 23731 (2016). doi: 10.1038/srep23731
[28] Huang, C. et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Sci. Rep. 7, 42302 (2017). doi: 10.1038/srep42302
[29] Li, L. L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017). doi: 10.1038/s41467-017-00164-9
[30] Hadad, Y., Sounas, D. L. & Alu, A. Space-time gradient metasurfaces. Phys. Rev. B 92, 100304 (2015). doi: 10.1103/PhysRevB.92.100304
[31] Shaltout, A., Kildishev, A. & Shalaev, V. Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Exp. 5, 2459-2467 (2015). doi: 10.1364/OME.5.002459
[32] Liu, Z. Z., Li, Z. Y. & Aydin, K. Time-varying metasurfaces based on graphene microribbon arrays. ACS Photonics 3, 2035-2039 (2016). doi: 10.1021/acsphotonics.6b00653
[33] Stewart, S. A., Smy, T. J. & Gupta, S. Finite-difference time-domain modeling of space-time-modulated metasurfaces. IEEE Trans. Antennas Propag. 66, 281-292 (2017). doi: 10.1109/TAP.2017.2772045
[34] Li, G. X. et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 14, 607-612 (2015). doi: 10.1038/nmat4267
[35] Rose, A., Huang, D. & Smith, D. R. Controlling the second harmonic in a phase-matched negative-index metamaterial. Phys. Rev. Lett. 107, 063902 (2011). doi: 10.1103/PhysRevLett.107.063902
[36] Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65-69 (2014). doi: 10.1038/nature13455
[37] Klein, M. W., Enkrich, C., Wegener, M. & Linden, S. Second-harmonic generation from magnetic metamaterials. Science 313, 502-504 (2006). doi: 10.1126/science.1129198
[38] Lapine, M., Shadrivov, I. V., Powell, D. A. & Kivshar, Y. S. Magnetoelastic metamaterials. Nat. Mater. 11, 30-33 (2011). doi: 10.1038/nmat3168
[39] Zhao, J. et al. Controlling spectral energies of all harmonics in programmable way using time-domain digital coding metasurface. Preprint at https://arxiv.org/abs/1806.04414. Accessed June 2018.
[40] Rocca, P., Zhu, Q. J., Bekele, E. T., Yang, S. W. & Massa, A. 4-D arrays as enabling technology for cognitive radio systems. IEEE Trans. Antennas Propag. 62, 1102-1116 (2014). doi: 10.1109/TAP.2013.2288109
[41] Secmen M., Demir S., Hizal A., & Eker T. Frequency diverse array antenna with periodic time modulated pattern in range and angle. In Proc. of 2007 IEEE Radar Conference 427-430 (IEEE, Boston, MA, USA, 2007).
[42] Poli, L., Rocca, P., Manica, L. & Massa, A. Handling sideband radiations in time-modulated arrays through particle swarm optimization. IEEE Trans. Antennas Propag. 58, 1408-1411 (2010). doi: 10.1109/TAP.2010.2041165
[43] Poli, L., Rocca, P., Oliveri, G. & Massa, A. Harmonic beamforming in time-modulated linear arrays. IEEE Trans. Antennas Propag. 59, 2538-2545 (2011). doi: 10.1109/TAP.2011.2152323
[44] Poli, L., Rocca, P., Manica, L. & Massa, A. Pattern synthesis in time-modulated linear arrays through pulse shifting. IET Microw. Antennas Propag. 4, 1157-1164 (2010). doi: 10.1049/iet-map.2009.0042
[45] Zhao, J. et al. A tunable metamaterial absorber using varactor diodes. New J. Phys. 15, 043049 (2013). doi: 10.1088/1367-2630/15/4/043049
[46] Liu, S. et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci. 3, 1600156 (2016). doi: 10.1002/advs.201600156
[47] Wang, D., Liu, Z. G., Zhao, J., Cheng, Q. & Cui, T. J. Accurate design of low backscattering metasurface using iterative fourier transform algorithm. Sci. Rep. 7, 11346 (2017). doi: 10.1038/s41598-017-11719-7