[1] Kaiser, W. & Garrett, C. G. B. Two-photon excitation in CaF2: Eu2+. Phys. Rev. Lett. 7, 229–231 (1961). doi: 10.1103/PhysRevLett.7.229
[2] Abella, I. D. Optical double-photon absorption in cesium vapor. Phys. Rev. Lett. 9, 453–455 (1962). doi: 10.1103/PhysRevLett.9.453
[3] Saha, K. et al. Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber. Phys. Rev. A 83, 033833 (2011). doi: 10.1103/PhysRevA.83.033833
[4] Franken, P. A. et al. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961). doi: 10.1103/PhysRevLett.7.118
[5] Ward, J. F. & New, G. H. C. Optical third harmonic generation in gases by a focused laser beam. Phys. Rev. 185, 57–72 (1969). doi: 10.1103/PhysRev.185.57
[6] Miles, R. & Harris, S. Optical third-harmonic generation in alkali metal vapors. IEEE J. Quantum Electron. 9, 470–484 (1973). doi: 10.1109/JQE.1973.1077492
[7] Van Loon, M. A. W. et al. Giant multiphoton absorption for THz resonances in silicon hydrogenic donors. Nat. Photonics 12, 179–184 (2018). doi: 10.1038/s41566-018-0111-x
[8] Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901 (2014). doi: 10.1103/PhysRevLett.113.073901
[9] Beaulieu, S. et al. Role of excited states in high-order harmonic generation. Phys. Rev. Lett. 117, 203001 (2016). doi: 10.1103/PhysRevLett.117.203001
[10] Haworth, C. A. et al. Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval. Nat. Phys. 3, 52–57 (2007). doi: 10.1038/nphys463
[11] Gontier, Y. & Trahin, M. On the multiphoton absorption in atomic hydrogen. Phys. Lett. A 36, 463–464 (1971).
[12] Li, J. et al. Radii of Rydberg states of isolated silicon donors. Phys. Rev. B 98, 085423 (2018). doi: 10.1103/PhysRevB.98.085423
[13] Boyd, R. W. Nonlinear Optics. 3rd edn, 640. Academic Press, New York (2008).
[14] Kohn, W. & Luttinger, J. M. Theory of donor states in silicon. Phys. Rev. 98, 915–922 (1955). doi: 10.1103/PhysRev.98.915
[15] The Mathematica FEM code used in this paper is available at, https://github.com/lehnqt/chi3.git.
[16] Mizuno, J. Use of the sturmian function for the calculation of the third harmonic generation coefficient of the hydrogen atom. J. Phys. B: At. Mol. Phys. 5, 1149–1154 (1972). doi: 10.1088/0022-3700/5/6/017
[17] Ramdas, A. K. & Rodriguez, S. Review article: spectroscopy of the solid-state analogues of the hydrogen atom: donors and acceptors in semiconductors. Rep. Prog. Phys. 44, 1297–1387 (1981). doi: 10.1088/0034-4885/44/12/002
[18] Murdin, B. N. et al. Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars. Nat. Commun. 4, 1469 (2013). doi: 10.1038/ncomms2466
[19] Faulkner, R. A. Higher donor excited states for prolate-spheroid conduction bands: a reevaluation of silicon and germanium. Phys. Rev. 184, 713–721 (1969). doi: 10.1103/PhysRev.184.713
[20] Yuen, S. Y. & Wolff, P. A. Difference-frequency variation of the free-carrier-induced, third-order nonlinear susceptibility in n-InSb. Appl. Phys. Lett. 40, 457–459 (1982). doi: 10.1063/1.93147
[21] Susoma, J. et al. Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy. Appl. Phys. Lett. 108, 073103 (2016). doi: 10.1063/1.4941998
[22] Thomas, G. A. et al. Optical study of interacting donors in semiconductors. Phys. Rev. B 23, 5472–5494 (1981). doi: 10.1103/PhysRevB.23.5472
[23] Steger, M. et al. Shallow impurity absorption spectroscopy in isotopically enriched silicon. Phys. Rev. B 79, 205210 (2009). doi: 10.1103/PhysRevB.79.205210
[24] Greenland, P. T. et al. Coherent control of Rydberg states in silicon. Nature 465, 1057–1061 (2010). doi: 10.1038/nature09112
[25] Woodward, R. I. et al. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater. 4, 11006 (2017).
[26] Karvonen, L. et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat. Commun. 8, 15714 (2017). doi: 10.1038/ncomms15714
[27] Säynätjoki, A. et al. Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano 7, 8441–8446 (2013). doi: 10.1021/nn4042909
[28] König-Otto, J. C. et al. Four-wave mixing in landau-quantized graphene. Nano Lett. 17, 2184–2188 (2017). doi: 10.1021/acs.nanolett.6b04665
[29] Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561, 507–511 (2018). doi: 10.1038/s41586-018-0508-1
[30] Sirtori, C. et al. Giant, triply resonant, third-order nonlinear susceptibility $\chi _{3\omega }.{(3)}$ in coupled quantum wells. Phys. Rev. Lett. 68, 1010–1013 (1992). doi: 10.1103/PhysRevLett.68.1010
[31] Yildirim, H. & Aslan, B. Donor-related third-order optical nonlinearites in GaAs/AlGaAs quantum wells at the THz region. Semicond. Sci. Technol. 26, 085017 (2011). doi: 10.1088/0268-1242/26/8/085017
[32] Shen, Y. R. The Principles of Nonlinear Optics. 3rd edn, 576. Wiley-Interscience, New York, 2002.
[33] Chick, S. et al. Metrology of complex refractive index for solids in the terahertz regime using frequency domain spectroscopy. Metrologia 55, 771 (2018). doi: 10.1088/1681-7575/aae2c9
[34] Scalari, G. et al. Magnetically assisted quantum cascade laser emitting from 740GHz to 1.4THz. Appl. Phys. Lett. 97, 081110 (2010). doi: 10.1063/1.3481698
[35] Wienold, M. et al. Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz. Appl. Phys. Lett. 107, 202101 (2015). doi: 10.1063/1.4935942
[36] Li, L. et al. Terahertz quantum cascade lasers with > 1 W output powers. Electron. Lett. 50, 4309 (2014).
[37] Li, L. H. et al. Multi-Watt high-power THz frequency quantum cascade lasers. Electron. Lett. 53, 799 (2017). doi: 10.1049/el.2017.0662
[38] Pfeffer, P. et al. p-type Ge cyclotron-resonance laser: Theory and experiment. Phys. Rev. B 47, 4522–4531 (1993). doi: 10.1103/PhysRevB.47.4522
[39] Hübers, H. W., Pavlov, S. G. & Shastin, V. N. Terahertz lasers based on germanium and silicon. Semicond. Sci. Technol. 20, S211–S221 (2005). doi: 10.1088/0268-1242/20/7/011
[40] Ohtani, K., Beck, M. & Faist, J. Double metal waveguide InGaAs/AlInAs quantum cascade lasers emitting at 24 μm. Appl. Phys. Lett. 105, 121115 (2014). doi: 10.1063/1.4896542
[41] Saeedi, K. et al. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications. Sci. Rep. 5, 10493 (2015). doi: 10.1038/srep10493
[42] Litvinenko, K. L. et al. Coherent creation and destruction of orbital wavepackets in Si:P with electrical and optical read-out. Nat. Commun. 6, 6549 (2015). doi: 10.1038/ncomms7549
[43] Chick, S. et al. Coherent superpositions of three states for phosphorous donors in silicon prepared using THz radiation. Nat. Commun. 8, 16038 (2017). doi: 10.1038/ncomms16038
[44] Stoneham, A. M. et al. Letter to the editor: optically driven silicon-based quantum gates with potential for high-temperature operation. J. Phys.: Condens. Matter 15, L447–L451 (2003). doi: 10.1088/0953-8984/15/27/102
[45] Bebb, H. B. & Gold, A. Multiphoton ionization of hydrogen and rare-gas atoms. Phys. Rev. 143, 1–24 (1966). doi: 10.1103/PhysRev.143.1