[1] Navarro, R. Optics of the human eye. Perception 30, 259-260 (2001). doi: 10.1068/p3002rvw
[2] Lee, G. J. et al. Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses. Advanced Functional Materials 28, 1705202 (2018). doi: 10.1002/adfm.201705202
[3] Horridge, G. A. The compound eye of insects. Scientific American 237, 108-120 (1977). doi: 10.1038/scientificamerican0777-108
[4] Fernald, R. D. The evolution of eyes. Brain,Behavior and Evolution 50, 253-259 (1997). doi: 10.1159/000113339
[5] Horridge, G. A. Review lecture: apposition eyes of large diurnal insects as organs adapted to seeing. Proceedings of the Royal Society B: Biological Sciences 207, 287-309 (1980). doi: 10.1098/rspb.1980.0025
[6] Land, M. F. & Nilsson, D. E. Animal Eyes. 2nd edn. (Oxford: Oxford University Press, 2012).
[7] Wilburn, B. et al. High performance imaging using large camera arrays. ACM Transactions on Graphics 24, 765-776 (2005). doi: 10.1145/1073204.1073259
[8] Afshari, H. et al. A spherical multi-camera system with real-time omnidirectional video acquisition capability. IEEE Transactions on Consumer Electronics 58, 1110-1118 (2012). doi: 10.1109/TCE.2012.6414975
[9] Afshari, H. et al. The PANOPTIC camera: a plenoptic sensor with real-time omnidirectional capability. Journal of Signal Processing Systems 70, 305-328 (2013). doi: 10.1007/s11265-012-0668-4
[10] Brady, D. J. et al. Multiscale gigapixel photography. Nature 71, 386-389 (2012). doi: 10.1038/nature11150
[11] Wang, Y. W. et al. Optical system design of artificial compound eye based on field stitching. Microwave and Optical Technology Letters 59, 1277-1279 (2017). doi: 10.1002/mop.30525
[12] Tanida, J. et al. Thin Observation Module by Bound Optics (TOMBO): concept and experimental verification. Applied Optics 40, 1806-1813 (2001). doi: 10.1364/AO.40.001806
[13] Tanida, J. et al. Color imaging with an integrated compound imaging system. Optics Express 11, 2109-2117 (2003). doi: 10.1364/OE.11.002109
[14] Duparré, J. et al. Artificial apposition compound eye fabricated by micro-optics technology. Applied Optics 43, 4303-4310 (2004). doi: 10.1364/AO.43.004303
[15] Duparré, J. et al. Thin compound-eye camera. Applied Optics 44, 2949-2956 (2005). doi: 10.1364/AO.44.002949
[16] Floreano, D. et al. Miniature curved artificial compound eyes. Proceedings of the National Academy of Sciences of the United States of America 110, 9267-9272 (2013). doi: 10.1073/pnas.1219068110
[17] Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95-99 (2013). doi: 10.1038/nature12083
[18] Jeong, K. H., Kim, J. Biologically inspired artificial compound eyes. Science 312, 557-561 (2006). doi: 10.1126/science.1123053
[19] Wu, D. et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging. Advanced Optical Materials 2, 751-758 (2014). doi: 10.1002/adom.201400175
[20] Lin, B. J. Immersion lithography and its impact on semiconductor manufacturing. Journal of Micro/Nanolithography,MEMS,and MOEMS 3, 377-395 (2004). doi: 10.1117/1.1756917
[21] Colson, P., Henrist, C. & Cloots, R. Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. Journal of Nanomaterials 2013, 948510 (2013). doi: 10.1155/2013/948510
[22] Bae, S. I. et al. Multifocal microlens arrays using multilayer photolithography. Optics Express 28, 9082-9088 (2020). doi: 10.1364/OE.388921
[23] Heo, S. G. et al. Large-area fabrication of microlens arrays by using self-pinning effects during the thermal reflow process. Optics Express 27, 3439-3447 (2019). doi: 10.1364/OE.27.003439
[24] Oh, S. S., Choi, C. G. & Kim, Y. S. Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process. Microelectronic Engineering 87, 2328-2331 (2010). doi: 10.1016/j.mee.2010.03.012
[25] Popovic, Z. D., Sprague, R. A. & Neville Connell, G. A. Technique for monolithic fabrication of microlens arrays. Applied Optics 27, 1281-1284 (1988). doi: 10.1364/AO.27.001281
[26] Kim, K. et al. Biologically inspired ultrathin arrayed camera for high-contrast and high-resolution imaging. Light: Science & Applications 9, 28 (2020). doi: 10.1038/s41377-020-0261-8
[27] Di, S., Lin, H. & Du, R. X. An artificial compound eyes imaging system based on MEMS technology. Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics. Guilin: IEEE, 2009. doi: 10.1109/robio.2009.5420831
[28] Oikawa, M. et al. Array of distributed-index planar micro-lenses prepared from ion exchange technique. Japanese Journal of Applied Physics 20, L296-L298 (1981). doi: 10.1143/JJAP.20.L296
[29] Katayama, T., Munetaka, Y. & Iga, K. Improvement of electric-field-assisted ion exchange method for planar microlens array fabrication. Japanese Journal of Applied Physics 38, 775-776 (1999). doi: 10.1143/JJAP.38.775
[30] Baehr, J. & Brenner, K. H. Applications and potential of the mask structured ion exchange technique (MSI) in micro-optics. Proceedings of SPIE 5177, Gradient Index, Miniature, and Diffractive Optical Systems III. San Diego: SPIE, 2003: 121-132. doi: 10.1117/12.508781
[31] Kasztelanic, R. et al. Light field camera based on hexagonal array of flat-surface nanostructured GRIN lenses. Optics Express 27, 34985-34996 (2019). doi: 10.1364/OE.27.034985
[32] Stern, M. B. & Jay, T. R. Dry etching for coherent refractive microlens arrays. Optical Engineering 33, 3547-3551 (1994). doi: 10.1117/12.179880
[33] Albero, J. et al. Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques. Optics Express 17, 6283-6292 (2009). doi: 10.1364/OE.17.006283
[34] Bitterli, R. et al. Fabrication and characterization of linear diffusers based on concave micro lens arrays. Optics Express 18, 14251-14261 (2010). doi: 10.1364/OE.18.014251
[35] Kim, H. M. et al. Large area fabrication of engineered microlens array with low sag height for light-field imaging. Optics Express 27, 4435-4444 (2019). doi: 10.1364/OE.27.004435
[36] He, Q. et al. Fabrication and characterization of biologically inspired curved-surface artificial compound eyes. Journal of Microelectromechanical Systems 22, 4-6 (2013). doi: 10.1109/JMEMS.2012.2226934
[37] Baker, K. M. Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces. Applied Optics 38, 352-356 (1999). doi: 10.1364/AO.38.000352
[38] Yao, J. et al. Refractive micro lens array made of dichromate gelatin with gray-tone photolithography. Microelectronic Engineering 57-58, 729-735 (2001). doi: 10.1016/S0167-9317(01)00555-X
[39] Zhang, H. et al. A microlens array on curved substrates by 3D micro projection and reflow process. Sensors and Actuators A: Physical 179, 242-250 (2012). doi: 10.1016/j.sna.2012.03.002
[40] Zhang, Z. M. et al. Fast fabrication of curved microlens array using DMD-based lithography. AIP Advances 6, 015319 (2016). doi: 10.1063/1.4941356
[41] Radtke, D. et al. Laser lithographic fabrication and characterization of a spherical artificial compound eye. Optics Express 15, 3067-3077 (2007). doi: 10.1364/OE.15.003067
[42] MacFarlane, D. L. et al. Microjet fabrication of microlens arrays. IEEE Photonics Technology Letters 6, 1112-1114 (1994). doi: 10.1109/68.324684
[43] Luo, Y. et al. Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface. Applied Surface Science 279, 36-40 (2013). doi: 10.1016/j.apsusc.2013.03.148
[44] Zhu, X. Y. et al. Fabrication of high numerical aperture micro-lens array based on drop-on-demand generating of water-based molds. Optics & Laser Technology 68, 23-27 (2015). doi: 10.1016/j.optlastec.2014.11.003
[45] Zhou, P. L. et al. Cross-scale additive direct-writing fabrication of micro/nano lens arrays by electrohydrodynamic jet printing. Optics Express 28, 6336-6349 (2020). doi: 10.1364/OE.383863
[46] Yong, J. L. et al. Using an "underwater superoleophobic pattern" to make a liquid lens array. RSC Advances 5, 40907-40911 (2015). doi: 10.1039/C5RA04671H
[47] Biebuyck, H. A. & Whitesides, G. M. Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold. Langmuir 10, 2790-2793 (1994). doi: 10.1021/la00020a047
[48] Jiang, W. et al. Tunable liquid microlens arrays actuated by infrared light-responsive graphene microsheets. Journal of Micromechanics and Microengineering 27, 085006 (2017). doi: 10.1088/1361-6439/aa7968
[49] Kim, J. et al. Electric-field-assisted single-step in situ fabrication and focal length control of polymeric convex lens on flexible substrate. Advanced Materials Technologies 3, 1800108 (2018). doi: 10.1002/admt.201800108
[50] Lv, S. Y., Liu, C. Q. & Luo, W. F. Numerical study of an electrowetting liquid microlens. AIP Advances 8, 115035 (2018). doi: 10.1063/1.5049385
[51] Fang, F. Z. et al. Manufacturing and measurement of freeform optics. CIRP Annals 62, 823-846 (2013). doi: 10.1016/j.cirp.2013.05.003
[52] To, S., Zhu, Z. W. & Wang, H. T. Virtual spindle based tool servo diamond turning of discontinuously structured microoptics arrays. CIRP Annals 65, 475-478 (2016). doi: 10.1016/j.cirp.2016.04.047
[53] Zhu, L. L. et al. Review on fast tool servo machining of optical freeform surfaces. The International Journal of Advanced Manufacturing Technology 95, 2071-2092 (2018). doi: 10.1007/s00170-017-1271-4
[54] Gao, W. et al. On-machine and in-process surface metrology for precision manufacturing. CIRP Annals 68, 843-866 (2019). doi: 10.1016/j.cirp.2019.05.005
[55] Tong, Z. et al. Fast-tool-servo micro-grooving freeform surfaces with embedded metrology. CIRP Annals 69, 505-508 (2020). doi: 10.1016/j.cirp.2020.04.111
[56] Li, L. K. & Yi, A. Y. Design and fabrication of a freeform microlens array for uniform beam shaping. Microsystem Technologies 17, 1713-1720 (2011). doi: 10.1007/s00542-011-1359-y
[57] Roeder, M. et al. Injection compression molded microlens arrays for hyperspectral imaging. Micromachines 9, 355 (2018). doi: 10.3390/mi9070355
[58] Yi, A. Y. & Li, L. Design and fabrication of a microlens array by use of a slow tool servo. Optics Letters 30, 1707-1709 (2005). doi: 10.1364/OL.30.001707
[59] Li, L. & Yi, A. Y. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera. Applied Optics 51, 1843-1852 (2012). doi: 10.1364/AO.51.001843
[60] Dunkel, J. et al. Laser lithographic approach to micro-optical freeform elements with extremely large sag heights. Optics Express 20, 4763-4775 (2012). doi: 10.1364/OE.20.004763
[61] Gao, P. et al. Fabrication of a micro-lens array mold by micro ball end-milling and its hot embossing. Micromachines 9, 96 (2018). doi: 10.3390/mi9030096
[62] Yan, J. W. et al. Fabricating micro-structured surface by using single-crystalline diamond endmill. The International Journal of Advanced Manufacturing Technology 51, 957-964 (2010). doi: 10.1007/s00170-010-2695-2
[63] Li, D. et al. Ultraprecision machining of microlens arrays with integrated on-machine surface metrology. Optics Express 27, 212-224 (2019). doi: 10.1364/OE.27.000212
[64] Chichkov, B. N. et al. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A 63, 109-115 (1996). doi: 10.1007/BF01567637
[65] Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Physics Reports 441, 47-189 (2007). doi: 10.1016/j.physrep.2006.12.005
[66] El-Bandrawy, M et al. Femtosecond laser micromachining of silicon for MEMS. Proceedings of SPIE 4977, Photon Processing in Microelectronics and Photonics II. San Jose: SPIE, 2003. doi: 10.1117/12.479556
[67] Yang, D., Jhaveri, S. J. & Ober, C. K. Three-dimensional microfabrication by two-photon lithography. MRS Bulletin 30, 976-982 (2005). doi: 10.1557/mrs2005.251
[68] Zhang, Y. L. et al. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5, 435-448 (2010). doi: 10.1016/j.nantod.2010.08.007
[69] Liu, M. N. et al. Etching-assisted femtosecond laser microfabrication. Chinese Physics B 27, 094212 (2018). doi: 10.1088/1674-1056/27/9/094212
[70] Lu, D. X. et al. Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. Journal of Materials Chemistry C 3, 1751-1756 (2015). doi: 10.1039/C4TC02737J
[71] Deng, C. et al. Fabrication of a compound infrared microlens array with ultrashort focal length using femtosecond laser-assisted wet etching and dual-beam pulsed laser deposition. Optics Express 27, 28679-28691 (2019). doi: 10.1364/OE.27.028679
[72] Kawata, S. et al. Finer features for functional microdevices. Nature 412, 697-698 (2001). doi: 10.1038/35089130
[73] Wu, D. et al. High numerical aperture microlens arrays of close packing. Applied Physics Letters 97, 031109 (2010). doi: 10.1063/1.3464979
[74] Pan, A. et al. Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching. Optics Express 22, 15245-15250 (2014). doi: 10.1364/OE.22.015245
[75] Lin, C. H. et al. Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing. Applied Physics A 97, 751-757 (2009). doi: 10.1007/s00339-009-5350-8
[76] Deng, Z. F. et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Optics Letters 40, 1928-1931 (2015). doi: 10.1364/OL.40.001928
[77] Meng, X. W. et al. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching. Applied Physics A 121, 157-162 (2015). doi: 10.1007/s00339-015-9402-y
[78] Liu, X. Q. et al. Rapid engraving of artificial compound eyes from curved sapphire substrate. Advanced Functional Materials 29, 1900037 (2019). doi: 10.1002/adfm.201900037
[79] Wei, Y. et al. Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems. Applied Surface Science 457, 1202-1207 (2018). doi: 10.1016/j.apsusc.2018.06.267
[80] Deng, Z. F. et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Advanced Functional Materials 26, 1995-2001 (2016). doi: 10.1002/adfm.201504941
[81] Liu, F. et al. Low-cost high integration IR polymer microlens array. Optics Letters 44, 1600-1602 (2019). doi: 10.1364/OL.44.001600
[82] Liu, X. Q. et al. Dry-etching-assisted femtosecond laser machining. Laser & Photonics Reviews 11, 1600115 (2017). doi: 10.1002/lpor.201600115
[83] Bian, H. et al. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process. Applied Physics Letters 109, 221109 (2016). doi: 10.1063/1.4971334
[84] Liu, X. Q. et al. Sapphire concave microlens arrays for high-fluence pulsed laser homogenization. IEEE Photonics Technology Letters 31, 1615-1618 (2019). doi: 10.1109/LPT.2019.2939349
[85] Liu, X. Q. et al. Optical nanofabrication of concave microlens arrays. Laser & Photonics Reviews 13, 1800272 (2019). doi: 10.1002/lpor.201800272
[86] Chen, F. et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Optics Express 18, 20334-20343 (2010). doi: 10.1364/OE.18.020334
[87] Yong, J. L. et al. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Applied Materials & Interfaces 5, 9382-9385 (2013). doi: 10.1021/am402923t
[88] Chen, F. et al. Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass. Optics Letters 39, 606-609 (2014). doi: 10.1364/OL.39.000606
[89] Ou, Y. et al. Direct fabrication of microlens arrays on PMMA with laser-induced structural modification. IEEE Photonics Technology Letters 27, 2253-2256 (2015). doi: 10.1109/LPT.2015.2459045
[90] Hua, J. G. et al. Convex silica microlens arrays via femtosecond laser writing. Optics Letters 45, 636-639 (2020). doi: 10.1364/OL.378606
[91] Li, J. et al. Artificial compound eyes prepared by a combination of air-assisted deformation, modified laser swelling, and controlled crystal growth. ACS Nano 13, 114-124 (2019). doi: 10.1021/acsnano.8b04047
[92] Liu, H. W. et al. Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections. Applied Physics Letters 100, 133701 (2012). doi: 10.1063/1.3696019
[93] Liu, F. et al. IR artificial compound eye. Advanced Optical Materials 8, 1901767 (2020). doi: 10.1002/adom.201901767
[94] Cao, J. J. et al. Bioinspired zoom compound eyes enable variable-focus imaging. ACS Applied Materials & Interfaces 12, 10107-10117 (2020). doi: 10.1021/acsami.9b21008
[95] Hu, Y. L. et al. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Advanced Optical Materials 6, 1701299 (2018). doi: 10.1002/adom.201701299
[96] Guo, R. et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express 14, 810-816 (2006). doi: 10.1364/OPEX.14.000810
[97] Hou, Z. S. et al. Tunable protein microlens array. Chinese Optics Letters 17, 061702 (2019). doi: 10.3788/COL201917.061702
[98] He, Z. Q. et al. Adaptive liquid crystal microlens array enabled by two-photon polymerization. Optics Express 26, 21184-21193 (2018). doi: 10.1364/OE.26.021184
[99] Wu, D. et al. 100% fill-factor Aspheric Microlens Arrays (AMLA) with sub-20-nm precision. IEEE Photonics Technology Letters 21, 1535-1537 (2009). doi: 10.1109/LPT.2009.2029346
[100] Tian, Z. N. et al. Focal varying microlens array. Optics Letters 40, 4222-4225 (2015). doi: 10.1364/OL.40.004222
[101] Yan, L. Y. et al. Rapid fabrication of continuous surface fresnel microlens array by femtosecond laser focal field engineering. Micromachines 11, 112 (2020). doi: 10.3390/mi11020112
[102] Ma, Z. C. et al. Smart compound eyes enable tunable imaging. Advanced Functional Materials 29, 1903340 (2019). doi: 10.1002/adfm.201903340
[103] Wu, D. et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light: Science & Applications 4, e228 (2015). doi: 10.1038/lsa.2015.1
[104] Tanaka, T., Sun, H. B. & Kawata, S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system. Applied Physics Letters 80, 312-314 (2002). doi: 10.1063/1.1432450
[105] Wu, D. et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab on a Chip 9, 2391-2394 (2009). doi: 10.1039/b902159k
[106] Fan, H. et al. Control of diameter and numerical aperture of microlens by a single ultra-short laser pulse. Optics Letters 44, 5149-5152 (2019). doi: 10.1364/OL.44.005149
[107] Cao, X. W. et al. Single-pulse writing of a concave microlens array. Optics Letters 43, 831-834 (2018). doi: 10.1364/OL.43.000831
[108] Cao, X. W. et al. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array. Applied Optics 57, 9604-9608 (2018). doi: 10.1364/AO.57.009604
[109] Hu, Y. L. et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization. Applied Physics Letters 103, 141112 (2013). doi: 10.1063/1.4824307
[110] Li, Z. W. & Xiao, J. L. Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera. Journal of Applied Physics 117, 014904 (2015). doi: 10.1063/1.4905299
[111] Huang, C. C. et al. Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes. Small 10, 3050-3057 (2014). doi: 10.1002/smll.201400037
[112] Lee, W. B. & Lee, H. N. Depth-estimation-enabled compound eyes. Optics Communications 412, 178-185 (2018). doi: 10.1016/j.optcom.2017.12.009
[113] Ma, M. C. et al. Development of an artificial compound eye system for three-dimensional object detection. Applied Optics 53, 1166-1172 (2014). doi: 10.1364/AO.53.001166
[114] Kim, H. M. et al. Miniaturized 3D depth sensing-based smartphone light field camera. Sensors 20, 2129 (2020). doi: 10.3390/s20072129
[115] Tan, Z. P. et al. Development of a modular, high-speed plenoptic-camera for 3D flow-measurement. Optics Express 27, 13400-13415 (2019). doi: 10.1364/OE.27.013400
[116] Jian, H. J. et al. Automatic geometric calibration and three-dimensional detecting with an artificial compound eye. Applied Optics 56, 1296-1301 (2017). doi: 10.1364/AO.56.001296
[117] Luo, J. S. et al. Design and fabrication of a multi-focusing artificial compound eyes with negative meniscus substrate. Journal of Micromechanics and Microengineering 27, 045011 (2017). doi: 10.1088/1361-6439/aa5f88
[118] Li, F. et al. Curved micro lens array for bionic compound eye. Optik 124, 1346-1349 (2013). doi: 10.1016/j.ijleo.2012.03.063
[119] Kim, M. S. et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nature Electronics 3, 546-553 (2020). doi: 10.1038/s41928-020-0429-5
[120] Lee, W. et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nature Communications 9, 1417 (2018). doi: 10.1038/s41467-018-03870-0
[121] Gu, L. L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278-282 (2020). doi: 10.1038/s41586-020-2285-x
[122] Lee, W. B. et al. COMPU-EYE: a high resolution computational compound eye. Optics Express 24, 2013-2026 (2016). doi: 10.1364/OE.24.002013
[123] Fan, Z. B. et al. A broadband achromatic metalens array for integral imaging in the visible. Light: Science & Applications 8, 67 (2019). doi: 10.1364/isa.2019.itu4b.4
[124] Wu, J. S. et al. A microlens super-surface film with regular graded circular hole-like subwavelength structures for highly focusing strength. Coatings 9, 776 (2019). doi: 10.3390/coatings9120776
[125] Ding, X. M. et al. Metasurface holographic image projection based on mathematical properties of Fourier transform. PhotoniX 1, 16 (2020). doi: 10.1186/s43074-020-00016-8
[126] Zou, X. J. et al. Imaging based on metalenses. PhotoniX 1, 2 (2020). doi: 10.1186/s43074-020-00007-9
[127] Keum, D. et al. Xenos peckii vision inspires an ultrathin digital camera. Light: Science & Applications 7, 80 (2018). doi: 10.1038/s41377-018-0081-2