[1] Amano, H., Kito, M., Hiramatsu, K. & Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn J. Appl. Phys. 28, L2112–L2114 (1989). doi: 10.1143/JJAP.28.L2112
[2] Pimputkar, S., Speck, J. S., DenBaars, S. P. & Nakamura, S. Prospects for LED lighting. Nat. Photonics 3, 180–182 (2009). doi: 10.1038/nphoton.2009.32
[3] Nanishi, Y. Nobel prize in physics: the birth of the blue LED. Nat. Photonics 8, 884–886 (2014). doi: 10.1038/nphoton.2014.291
[4] Li, G. Q. et al. GaN-based light-emitting diodes on various substrates: a critical review. Rep. Prog. Phys. 79, 056501 (2016). doi: 10.1088/0034-4885/79/5/056501
[5] Wang, Y. J. et al. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides. Appl. Phys. Lett. 108, 162102 (2016). doi: 10.1063/1.4947280
[6] Li, D. B., Jiang, K., Sun, X. J. & Guo, C. L. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 10, 43–110 (2018). doi: 10.1364/AOP.10.000043
[7] Fromhold, A. T. Jr. Quantum Mechanics for Applied Physics and Engineering 5–6 (Dover Publications, New York, 1991).
[8] Fu, J. W. et al. Spatial audio acquisition using a dual-functioning MQW-diode with a three-stage amplifier circuit. IEEE Access 6, 8954–8958 (2018). doi: 10.1109/ACCESS.2018.2808245
[9] Wang, Y. J. et al. Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication. Opt. Commun. 387, 440–445 (2017). doi: 10.1016/j.optcom.2016.10.070
[10] Cai, W. et al. On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities. Opt. Express 24, 6004–6010 (2016). doi: 10.1364/OE.24.006004
[11] Shen, C. et al. High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm. ACS Photonics 3, 262–268 (2016). doi: 10.1021/acsphotonics.5b00599
[12] Feng, M. X. et al. On-chip integration of GaN-based laser, modulator, and photodetector Grown on Si. IEEE J. Sel. Top. Quantum Electron. 24, 8200305 (2018). https://www.researchgate.net/publication/323764792_On-Chip_Integration_of_GaN-Based_Laser_Modulator_and_Photodetector_Grown_on_Si
[13] Li, K. H. et al. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica 5, 564–569 (2018). doi: 10.1364/OPTICA.5.000564
[14] Tsai, C. L., Li, Y. C., Lu, Y. C. & Chang, S. H. Fabrication and characterization of Si substrate-free InGaN light-emitting diodes and their application in visible light communications. IEEE Photonics J. 9, 8200612 (2017). http://www.researchgate.net/publication/315323945_Fabrication_and_characterization_of_Si_substrate-free_InGaN_light-emitting_diodes_and_their_application_in_visible_light_communications
[15] Qin, C. et al. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics. Appl. Phys. Express 11, 051201 (2018). doi: 10.7567/APEX.11.051201
[16] Li, Z. C. et al. High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111). Appl. Phys. Express 10, 072101 (2017). doi: 10.7567/APEX.10.072101
[17] Zhang, Z. H. et al. UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections. Opt. Lett. 42, 4533–4536 (2017). doi: 10.1364/OL.42.004533
[18] Gao, X. M. et al. Light coupling for on-chip optical interconnects. Opt. Laser Technol. 97, 154–160 (2017). doi: 10.1016/j.optlastec.2017.06.017
[19] Sun, Y. et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photonics 10, 595–599 (2016). doi: 10.1038/nphoton.2016.158
[20] Sun, Y. et al. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light Sci. Appl. 7, 13 (2018). doi: 10.1038/s41377-018-0008-y
[21] Feng, M. X. et al. Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si. ACS Photonics 5, 699–704 (2018). doi: 10.1021/acsphotonics.7b01215
[22] Sun, Q. et al. GaN-on-Si Blue/White LEDs: epitaxy, chip, and package. J. Semicond. 37, 044006 (2016). doi: 10.1088/1674-4926/37/4/044006
[23] Mikulics, M. & Hardtdegen, H. Nano-LED array fabrication suitable for future single photon lithography. Nanotechnology 26, 185302 (2015). doi: 10.1088/0957-4484/26/18/185302
[24] Mikulics, M. et al. Direct electro-optical pumping for hybrid CdSe nanocrystal/Ⅲ-nitride based nano-light-emitting diodes. Appl. Phys. Lett. 108, 061107 (2016). doi: 10.1063/1.4941923
[25] Li, K. H., Cheung, Y. F., Fu, W. Y., Wong, K. K. Y. & Choi, H. W. Monolithic integration of GaN-on-sapphire light-emitting diodes, photodetectors, and waveguides. IEEE J. Sel. Top. Quantum Electron. 24, 3801706 (2018). http://www.researchgate.net/publication/324568304_Monolithic_Integration_of_GaN-on-Sapphire_Light-Emitting_Diodes_Photodetectors_and_Waveguides
[26] Yang, Y. C. et al. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration. Opt. Mater. 66, 659–663 (2017). doi: 10.1016/j.optmat.2017.03.017