[1] Quérard, J. et al. Kinetics of reactive modules adds discriminative dimensions for selective cell imaging. Chemphyschem 17, 1396–1413 (2016). doi: 10.1002/cphc.201500987
[2] Chudakov, D. M., Matz, M. V., Lukyanov, S. & Lukyanov, K. A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103–1163 (2010). doi: 10.1152/physrev.00038.2009
[3] Jullien, L. & Gautier, A. Fluorogen-based reporters for fluorescence imaging: a review. Methods Appl. Fluoresc. 3, 042007 (2015). doi: 10.1088/2050-6120/3/4/042007
[4] Egly, D., Geörg, D., Rädle, M. & Beuermann, T. A compact multi-channel fluorescence sensor with ambient light suppression. Meas. Sci. Technol. 23, 035702 (2012). doi: 10.1088/0957-0233/23/3/035702
[5] Zhu, B. H., Rasmussen, J. C. & Sevick-Muraca, E. M. Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode. Biomed. Opt. Express 5, 562–572 (2014). doi: 10.1364/BOE.5.000562
[6] Lanni, F., Pane, D. A., Weinstein, S. J. & Waggoner, A. S. Compact flashlamp-based fluorescence imager for use under ambient-light conditions. Rev. Sci. Instrum. 78, 033702 (2007). doi: 10.1063/1.2669831
[7] Sexton, K. et al. Pulsed-light imaging for fluorescence guided surgery under normal room lighting. Opt. Lett. 38, 3249–3252 (2013). doi: 10.1364/OL.38.003249
[8] Mansfield, J. R., Gossage, K. W., Hoyt, C. C. & Levenson, R. M. Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J. Biomed. Opt. 10, 041207 (2005). doi: 10.1117/1.2032458
[9] Gao, L. & Smith, R. T. Optical hyperspectral imaging in microscopy and spectroscopy—a review of data acquisition. J. Biophotonics 8, 441–456 (2015). doi: 10.1002/jbio.201400051
[10] Bastiaens, P. I. H. & Squire, A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52 (1999). doi: 10.1016/S0962-8924(98)01410-X
[11] Yuan, J. L. & Wang, G. L. Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. J. Fluoresc. 15, 559–568 (2005). doi: 10.1007/s10895-005-2829-3
[12] Lichten, C. A., White, R., Clark, I. B. N. & Swain, P. S. Unmixing of fluorescence spectra to resolve quantitative time-series measurements of gene expression in plate readers. BMC Biotechnol. 14, 11 (2014). doi: 10.1186/1472-6750-14-11
[13] Lakowicz, J. R., Szmacinski, H., Nowaczyk, K., Berndt, K. W. & Johnson, M. Fluorescence lifetime imaging. Anal. Biochem. 202, 316–330 (1992). doi: 10.1016/0003-2697(92)90112-K
[14] Dempsey, G. T. et al. Photoswitching mechanism of cyanine dyes. J. Am. Chem. Soc. 131, 18192–18193 (2009). doi: 10.1021/ja904588g
[15] Yun, C., You, J., Kim, J., Huh, J. & Kim, E. Photochromic fluorescence switching from diarylethenes and its applications. J. Photochem. Photobiol. C: Photochem. Rev. 10, 111–129 (2009). doi: 10.1016/j.jphotochemrev.2009.05.002
[16] Fukaminato, T. Single-molecule fluorescence photoswitching: design and synthesis of photoswitchable fluorescent molecules. J. Photochem. Photobiol. C: Photochem. Rev. 12, 177–208 (2011). doi: 10.1016/j.jphotochemrev.2011.08.006
[17] Bourgeois, D. & Adam, V. Reversible photoswitching in fluorescent proteins: a mechanistic view. IUBMB Life 64, 482–491 (2012). doi: 10.1002/iub.1023
[18] Zhou, X. X. & Lin, M. Z. Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Curr. Opin. Chem. Biol. 17, 682–690 (2013). doi: 10.1016/j.cbpa.2013.05.031
[19] van de Linde, S. & Sauer, M. How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chem. Soc. Rev. 43, 1076–1087 (2014). doi: 10.1039/C3CS60195A
[20] Quérard, J. et al. Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations. Nat. Commun. 8, 969 (2017). doi: 10.1038/s41467-017-00847-3
[21] Marriott, G. et al. Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proc. Natl Acad. Sci. USA 105, 17789–17794 (2008). doi: 10.1073/pnas.0808882105
[22] Hsiang, J. C., Jablonski, A. E. & Dickson, R. M. Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background. Acc. Chem. Res. 47, 1545–1554 (2014). doi: 10.1021/ar400325y
[23] Quérard, J. et al. Photoswitching kinetics and phase-sensitive detection add discriminative dimensions for selective fluorescence imaging. Angew. Chem. 127, 2671–2675 (2015). doi: 10.1002/ange.201408985
[24] Quérard, J., Gautier, A., Le Saux, T. & Jullien, L. Expanding discriminative dimensions for analysis and imaging. Chem. Sci. 6, 2968–2978 (2015). doi: 10.1039/C4SC03955F
[25] Ornberg, R. L., Harper, T. F. & Liu, H. J. Western blot analysis with quantum dot fluorescence technology: a sensitive and quantitative method for multiplexed proteomics. Nat. Methods 2, 79–81 (2005). doi: 10.1038/nmeth0105-79
[26] Shah, K. G. & Yager, P. Wavelengths and lifetimes of paper autofluorescence: a simple substrate screening process to enhance the sensitivity of fluorescence-based assays in paper. Anal. Chem. 89, 12023–12029 (2017). doi: 10.1021/acs.analchem.7b02424
[27] Padmavathy, N. et al. Ultra-sensitive detection of proteins using chemically modified nanoporous PVDF membrane with attenuated near IR autofluorescence. ChemistrySelect 3, 3839–3847 (2018). doi: 10.1002/slct.201702859
[28] Kondo, Y. et al. Sensitive detection of fluorescence in western blotting by merging images. PLoS ONE 13, e0191532 (2018). doi: 10.1371/journal.pone.0191532
[29] Gowen, A. A., Feng, Y. Z., Gaston, E. & Valdramidis, V. Recent applications of hyperspectral imaging in microbiology. Talanta 137, 43–54 (2015). doi: 10.1016/j.talanta.2015.01.012
[30] Jun, W. et al. Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging. J. Food Eng. 99, 314–322 (2010). doi: 10.1016/j.jfoodeng.2010.03.005
[31] Chait, R., Shrestha, S., Shah, A. K., Michel, J. B. & Kishony, R. A differential drug screen for compounds that select against antibiotic resistance. PLoS ONE 5, e15179 (2010). doi: 10.1371/journal.pone.0015179
[32] Jaeger, P. A., McElfresh, C., Wong, L. R. & Ideker, T. Beyond agar: gel substrates with improved optical clarity and drug efficiency and reduced autofluorescence for microbial growth experiments. Appl. Environ. Microbiol. 81, 5639–5649 (2015). doi: 10.1128/AEM.01327-15
[33] Zhou, X., Carranco, R., Vitha, S. & Hall, T. C. The dark side of green fluorescent protein. New Phytol. 168, 313–322 (2005). doi: 10.1111/j.1469-8137.2005.01489.x
[34] Ckurshumova, W., Caragea, A. E., Goldstein, R. S. & Berleth, T. Glow in the dark: fluorescent proteins as cell and tissue-specific markers in plants. Mol. Plant 4, 794–804 (2011). doi: 10.1093/mp/ssr059
[35] Stewart, C. N. J. et al. Laser-induced fluorescence imaging and spectroscopy of GFP transgenic plants. J. Fluoresc. 15, 697–705 (2005). doi: 10.1007/s10895-005-2977-5
[36] Kondo, Y. et al. Sensitive detection of fluorescence in western blotting by merging images. PLoS ONE 13, e0191532 (2018). doi: 10.1371/journal.pone.0191532
[37] Ando, R., Flors, C., Mizuno, H., Hofkens, J. & Miyawaki, A. Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. Biophys. J. 92, L97–L99 (2007). doi: 10.1529/biophysj.107.105882
[38] Stiel, A. C. et al. 1.8 Ǻ bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402, 35–42 (2007). doi: 10.1042/BJ20061401
[39] Andresen, M. et al. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 26, 1035–1040 (2008). doi: 10.1038/nbt.1493
[40] Zelmer, A. & Ward, T. H. Noninvasive fluorescence imaging of small animals. J. Microsc. 252, 8–15 (2013). doi: 10.1111/jmi.12063
[41] Woolley, J. T. Reflectance and transmittance of light by leaves. Plant Physiol. 47, 656–662 (1971). doi: 10.1104/pp.47.5.656
[42] Bouas-Laurent, H. & Dürr, H. Organic photochromism. Pure Appl. Chem. 73, 639–665 (2001). doi: 10.1351/pac200173040639
[43] Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012). doi: 10.1039/C1CS15179G
[44] Dong, M. X., Babalhavaeji, A., Samanta, S., Beharry, A. A. & Woolley, G. A. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48, 2662–2670 (2015). doi: 10.1021/acs.accounts.5b00270
[45] Bléger, D. & Hecht, S. Visible-light-activated molecular switches. Angew. Chem. Int. Ed. 54, 11338–11349 (2015). doi: 10.1002/anie.201500628
[46] Fan, C. Y., Hsiang, J. C. & Dickson, R. M. Optical modulation and selective recovery of Cy5 fluorescence. Chemphyschem 13, 1023–1029 (2012). doi: 10.1002/cphc.201100671
[47] Mahoney, D. P. et al. Tailoring cyanine dark states for improved optically modulated fluorescence recovery. J. Phys. Chem. B 119, 4637–4643 (2015). doi: 10.1021/acs.jpcb.5b00777
[48] Matsuda, K. & Irie, M. Diarylethene as a photoswitching unit. J. Photochem. Photobiol. C: Photochem. Rev. 5, 169–182 (2004). doi: 10.1016/S1389-5567(04)00023-1
[49] Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 43, 148–184 (2014). doi: 10.1039/C3CS60181A