[1] Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458-1462 (2012). doi: 10.1126/science.1216210
[2] Choi, W., Park, E., Jeon, S. & Kim, C. Clinical photoacoustic imaging platforms. Biomed. Eng. Lett. 8, 139-155 (2018). doi: 10.1007/s13534-018-0062-7
[3] Vilov, S., Arnal, B. & Bossy, E. Overcoming the acoustic diffraction limit in photoacoustic imaging by the localization of flowing absorbers. Opt. Lett. 42, 4379-4382 (2017). doi: 10.1364/OL.42.004379
[4] Deán-Ben, X. L. & Razansky, D. Localization optoacoustic tomography. Light. Sci. Appl. 7, 18004 (2018). doi: 10.1038/lsa.2018.4
[5] Chaigne, T. et al. Super-resolution photoacoustic fluctuation imaging with multiple speckle illumination. Optica 3, 54-57 (2016). doi: 10.1364/OPTICA.3.000054
[6] Chaigne, T., Arnal, B., Vilov, S., Bossy, E. & Katz, O. Super-resolution photoacoustic imaging via flow-induced absorption fluctuations. Optica 4, 1397-1404 (2017). doi: 10.1364/OPTICA.4.001397
[7] Zhang, P., Li, L., Lin, L., Shi, J. & Wang, L. V. In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets. Light. Sci. Appl. 8, 36 (2019). doi: 10.1038/s41377-019-0147-9