[1] Newton I. Philosophiae Naturalis Principia Mathematica. London: Jussu Societatis Regis ac Typis Josephi Streater. Prostat apud plures Bibliopolas, 1687.
[2] Ivlev, A. V. et al. Statistical mechanics where Newton's third law is broken. Phys. Rev. X 5, 011035 (2015).
[3] Sukhov, S., Shalin, A., Haefner, D. & Dogariu, A. Actio et reactio in optical binding. Opt. Express 23, 247–252 (2015). doi: 10.1364/OE.23.000247
[4] Karásek, V., Šiler, M., Brzobohatý, O. & Zemánek, P. Dynamics of an optically bound structure made of particles of unequal sizes. Opt. Lett. 42, 1436–1439 (2017). doi: 10.1364/OL.42.001436
[5] Chen, H. X., Zhao, Q. L. & Du, X. M. Light-powered micro/nanomotors. Micromachines 9, 41 (2018). doi: 10.3390/mi9020041
[6] Shao L., Käll M. Light-driven rotation of plasmonic nanomotors. Adv Funct Mater 2018; https://doi.org/10.1002/adfm.201706272.
[7] Xu, L. L., Mou, F. Z., Gong, H. T., Luo, M. & Guan, J. G. Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46, 6905–6926 (2017). doi: 10.1039/C7CS00516D
[8] Figliozzi, P. et al. Driven optical matter: dynamics of electrodynamically coupled nanoparticles in an optical ring vortex. Phys. Rev. E 95, 022604 (2017). doi: 10.1103/PhysRevE.95.022604
[9] Sule, N., Yifat, Y., Gray, S. K. & Scherer, N. F. Rotation and negative torque in electrodynamically bound nanoparticle dimers. Nano. Lett. 17, 6548–6556 (2017). doi: 10.1021/acs.nanolett.7b02196
[10] Roichman, Y., Grier, D. G. & Zaslavsky, G. Anomalous collective dynamics in optically driven colloidal rings. Phys. Rev. E 75, 20401 (2007). doi: 10.1103/PhysRevE.75.020401
[11] Sbalzarini, I. F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195 (2005). doi: 10.1016/j.jsb.2005.06.002
[12] Burov, S. et al. Single-pixel interior filling function approach for detecting and correcting errors in particle tracking. Proc. Natl. Acad. Sci. USA 114, 221–226 (2017). doi: 10.1073/pnas.1619104114
[13] Yifat, Y., Sule, N., Lin, Y. H. & Scherer, N. F. Analysis and correction of errors in nanoscale particle tracking using the Single-pixel interior filling function (SPIFF) algorithm. Sci. Rep. 7, 16553 (2017). doi: 10.1038/s41598-017-14166-6
[14] Burns, M. M., Fournier, J. M. & Golovchenko, J. A. Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989).
[15] Dholakia, K. & Zemánek, P. Colloquium: gripped by light: Optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010). doi: 10.1103/RevModPhys.82.1767
[16] Yan, Z. J. et al. Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. ACS Nano 7, 1790–1802 (2013). doi: 10.1021/nn3059407
[17] Jiang, H. R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010). doi: 10.1103/PhysRevLett.105.268302
[18] Einstein, A. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann. Phys. 17, 549–560 (1905). doi: 10.1002/andp.19053220806
[19] Metzler, R. & Klafter, J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. Math. Gen. 37, R161–R208 (2004). doi: 10.1088/0305-4470/37/31/R01
[20] Sukhov, S., Kajorndejnukul, V., Naraghi, R. R. & Dogariu, A. Dynamic consequences of optical spin-orbit interaction. Nat. Photonics 9, 809–812 (2015). doi: 10.1038/nphoton.2015.200
[21] Damková, J. et al. Enhancement of the 'tractor-beam'pulling force on an optically bound structure. Light Sci. Appl. 7, 17135 (2018). doi: 10.1038/lsa.2017.135
[22] Xu, Y. L. Electromagnetic scattering by an aggregate of spheres. Appl. Opt. 34, 4573–4588 (1995). doi: 10.1364/AO.34.004573
[23] Ng, J., Lin, Z. F., Chan, C. T. & Sheng, P. Photonic clusters formed by dielectric microspheres: Numerical simulations. Phys. Rev. B 72, 85130 (2005). doi: 10.1103/PhysRevB.72.085130
[24] Li, J. J., Salandrino, A. & Engheta, N. Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain. Phys. Rev. B 76, 245403 (2007). doi: 10.1103/PhysRevB.76.245403
[25] Kosako, T., Kadoya, Y. & Hofmann, H. F. Directional control of light by a nano-optical Yagi-Uda antenna. Nat. Photonics 4, 312315 (2010). doi: 10.1038/nphoton.2010.34
[26] Liaw, J. W., Chen, Y. S. & Kuo, M. K. Spinning gold nanoparticles driven by circularly polarized light. J. Quant. Spectrosc. Radiat. Transf. 175, 46–53 (2016). doi: 10.1016/j.jqsrt.2016.01.012
[27] Simpson, S. H., Zemánek, P., Maragò, O. M., Jones, P. H. & Hanna, S. Optical binding of nanowires. Nano. Lett. 17, 3485–3492 (2017). doi: 10.1021/acs.nanolett.7b00494
[28] Tong, L. M., Miljković, V. D. & Käll, M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano. Lett. 10, 268–273 (2010). doi: 10.1021/nl9034434
[29] Liaw, J. W., Chen, Y. S. & Kuo, M. K. Rotating Au nanorod and nanowire driven by circularly polarized light. Opt. Express 22, 26005–26015 (2014). doi: 10.1364/OE.22.026005
[30] Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1, 186–207 (1971). doi: 10.1080/00411457108231446
[31] Ebbens, S. J. & Howse, J. R. In pursuit of propulsion at the nanoscale. Soft Matter 6, 726–738 (2010). doi: 10.1039/b918598d
[32] Howse, J. R. et al. Self-Motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 48102 (2007). doi: 10.1103/PhysRevLett.99.048102
[33] Abendroth, J. M., Bushuyev, O. S., Weiss, P. S. & Barrett, C. J. Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015). doi: 10.1021/acsnano.5b03367