[1] Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081–1083 (1998). doi: 10.1364/OL.23.001081
[2] Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001). doi: 10.1364/OL.26.001424
[3] Fong, B. H., Colburn, J. S., Ottusch, J. J., Visher, J. L. & Sievenpiper, D. F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58, 3212–3221 (2010). doi: 10.1109/TAP.2010.2055812
[4] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[5] Holloway, C. L. et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propagat. Mag. 54, 10–35 (2012). doi: 10.1109/MAP.2012.6230714
[6] Ni, X. J., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012). doi: 10.1126/science.1214686
[7] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014). doi: 10.1038/nmat3839
[8] Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014). doi: 10.1038/nphoton.2014.247
[9] Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009
[10] Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016). doi: 10.1038/nnano.2015.304
[11] Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012). doi: 10.1364/OE.20.020599
[12] Lin, D. M., Fan, P. Y., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213
[13] Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012). doi: 10.1038/nmat3292
[14] Qin, F. et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci. Adv. 2, e1501168 (2016). doi: 10.1126/sciadv.1501168
[15] Ding, X. M. et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency. Adv. Mater. 27, 1195–1200 (2015). doi: 10.1002/adma.201405047
[16] Yu, N. F. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328–6333 (2012). doi: 10.1021/nl303445u
[17] Ni, X. J., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi: 10.1038/ncomms3807
[18] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015). doi: 10.1038/nnano.2015.2
[19] Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015). doi: 10.1038/nnano.2015.186
[20] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015). doi: 10.1021/acs.nanolett.5b00184
[21] Pfeiffer, C. & Grbic, A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013). doi: 10.1103/PhysRevLett.110.197401
[22] Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750–5755 (2012). doi: 10.1021/nl303031j
[23] Pu, M. B. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015). doi: 10.1126/sciadv.1500396
[24] Devlin, R. C. et al. Spin-to-orbital angular momentum conversion in dielectric metasurfaces. Opt. Express 25, 377–393 (2017). doi: 10.1364/OE.25.000377
[25] Maguid, E. et al. Disorder-induced optical transition from spin Hall to random Rashba effect. Science 358, 1411–1415 (2017). doi: 10.1126/science.aap8640
[26] Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012). doi: 10.1038/nmat3431
[27] Fattal, D., Li, J. J., Peng, Z., Fiorentino, M. & Beausoleil, R. G. Flat dielectric grating reflectors with focusing abilities. Nat. Photonics 4, 466–470 (2010). doi: 10.1038/nphoton.2010.116
[28] Kundtz, N. & Smith, D. R. Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2010). doi: 10.1038/nmat2610
[29] Memarzadeh, B. & Mosallaei, H. Array of planar plasmonic scatterers functioning as light concentrator. Opt. Lett. 36, 2569–2571 (2011). doi: 10.1364/OL.36.002569
[30] Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012). doi: 10.1021/nl302516v
[31] Ni, X. J., Ishii, S., Kildishev, A. V. & Shalaev, V. M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl. 2, e72 (2013). doi: 10.1038/lsa.2013.28
[32] Pors, A., Nielsen, M. G., Eriksen, R. L. & Bozhevolnyi, S. I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013). doi: 10.1021/nl304761m
[33] Jiang, W. X. et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging. Adv. Mater. 25, 6963–6968 (2013). doi: 10.1002/adma.201303657
[34] Kim, S. W., Yee, K. J., Abashin, M., Pang, L. & Fainman, Y. Composite dielectric metasurfaces for phase control of vector field. Opt. Lett. 40, 2453–2456 (2015). doi: 10.1364/OL.40.002453
[35] Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015). doi: 10.1038/ncomms8069
[36] Arbabi, A., Briggs, R. M., Horie, Y., Bagheri, M. & Faraon, A. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt. Express 23, 33310–33317 (2015). doi: 10.1364/OE.23.033310
[37] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644
[38] Khorasaninejad, M. et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229–7234 (2016). doi: 10.1021/acs.nanolett.6b03626
[39] Zhan, A. et al. Low-contrast dielectric metasurface optics. ACS Photonics 3, 209–214 (2016). doi: 10.1021/acsphotonics.5b00660
[40] Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016). doi: 10.1038/ncomms13682
[41] Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017). doi: 10.1021/acs.nanolett.7b01888
[42] Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494
[43] Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016). doi: 10.1364/OPTICA.3.000628
[44] Zhao, Z. Y. et al. Multispectral optical metasurfaces enabled by achromatic phase transition. Sci. Rep. 5, 15781 (2015). doi: 10.1038/srep15781
[45] Avayu, O., Almeida, E., Prior, Y. & Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017). doi: 10.1038/ncomms14992
[46] Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017). doi: 10.1021/acs.nanolett.6b05137
[47] Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017). doi: 10.1364/OPTICA.4.000625
[48] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[49] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4
[50] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6
[51] Shrestha, S., Overvig, A. C., & Yu, N. F. in 2017 Conf. Lasers Electro-Opt. CLEO, paper FM1H. 3 2017.
[52] Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn (Cambridge University Press, Cambridge, 1999).
[53] Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals (Princeton University Press, Princeton, 2008).
[54] Principe, M. et al. Optical fiber meta-tips. Light Sci. Appl. 6, e16226 (2017). doi: 10.1038/lsa.2016.226
[55] Li, L. Z. et al. Nanofabrication on unconventional substrates using transferred hard masks. Sci. Rep. 5, 7802 (2015). doi: 10.1038/srep07802
[56] Huang, Z. P., Geyer, N., Werner, P., de Boor, J. & Gösele, U. Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285–308 (2011). doi: 10.1002/adma.201001784