[1] Gobin, A. M. et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007). doi: 10.1021/nl070610y
[2] Righini, M., Zelenina, A. S., Girard, C. & Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys. 3, 477–480 (2007). doi: 10.1038/nphys624
[3] Liu, G. L., Kim, J., Lu, Y. & Lee, L. P. Optofluidic control using photothermal nanoparticles. Nat. Mater. 5, 27–32 (2005). doi: 10.1038/nmat1528
[4] Liu, K., Xue, X. & Furlani, E. P. Theoretical comparison of optical properties of near-infrared colloidal plasmonic nanoparticles. Sci. Rep. 6, 34189 (2016). doi: 10.1038/srep34189
[5] Wang, Z. Plasmon—resonant gold nanoparticles for cancer optical imaging. Sci. China Phys. Mech. Astron. 56, 506–513 (2013). doi: 10.1007/s11433-013-5006-8
[6] Barrow, S. J., Wei, X., Baldauf, J. S., Funston, A. M. & Mulvaney, P. The surface plasmon modes of self-assembled gold nanocrystals. Nat. Commun. 3, 1275 (2012). doi: 10.1038/ncomms2289
[7] Kim, S. E. et al. Near-infrared plasmonic assemblies of gold nanoparticles with multimodal function for targeted cancer theragnosis. Sci. Rep. 7, 17327 (2017). doi: 10.1038/s41598-017-17714-2
[8] Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006). doi: 10.1021/jp057170o
[9] Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2, 18–29 (2007). doi: 10.1016/S1748-0132(07)70016-6
[10] Skirtach, A. G. et al. The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett. 5, 1371–1377 (2005). doi: 10.1021/nl050693n
[11] Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015). doi: 10.1016/j.neuron.2015.02.033
[12] Denk, W., Strickler, J. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990). doi: 10.1126/science.2321027
[13] Carrillo-Reid, L., Yang, W., Bando, Y., Peterka, D. S. & Yuste, R. Imprinting and recalling cortical ensembles. Science 353, 691–694 (2016). doi: 10.1126/science.aaf7560
[14] Jiang, C. et al. Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles. ACS Appl. Mater. Interfaces 5, 4972–4977 (2013). doi: 10.1021/am4007403
[15] Wang, H. et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl Acad. Sci. USA 102, 15752–15756 (2005). doi: 10.1073/pnas.0504892102
[16] Xu, C. & Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996). doi: 10.1364/JOSAB.13.000481
[17] Bachelier, G. et al. Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions. Phys. Rev. B 82, 235403 (2010). doi: 10.1103/PhysRevB.82.235403
[18] Rudnick, J. & Stern, E. A. Second-harmonic radiation from metal surfaces. Phys. Rev. B 4, 4274–4290 (1971). doi: 10.1103/PhysRevB.4.4274
[19] Hirase, H., Nikolenko, V., Goldberg, J. H. & Yuste, R. Multiphoton stimulation of neurons. J. Neurobiol. 51, 237–247 (2002). doi: 10.1002/neu.10056
[20] Dupre, C. & Yuste, R. Non-overlapping neural networks in hydra vulgaris. Curr. Biol. 27, 1085–1097 (2017). doi: 10.1016/j.cub.2017.02.049
[21] Han, S., Taralova, E., Dupre, C. & Yuste, R. Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire. eLife 7, e32605 (2018). doi: 10.7554/eLife.32605
[22] Husson, S. J., Gottschalk, A. & Leifer, A. M. Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour. Biol. Cell 105, 235–250 (2013). doi: 10.1111/boc.201200069
[23] Capretti, A., Forestiere, C., Dal Negro, L. & Miano, G. Full-wave analytical solution of second-harmonic generation in metal nanospheres. Plasmonics 9, 151–166 (2014). doi: 10.1007/s11468-013-9608-9
[24] Capretti, A., Pecora, E. F., Forestiere, C., Dal Negro, L. & Miano, G. Size-dependent second-harmonic generation from gold nanoparticles. Phys. Rev. B 89, 125414 (2014). doi: 10.1103/PhysRevB.89.125414
[25] Baffou, G. & Rigneault, H. Femtosecond-pulsed optical heating of gold nanoparticles. Phys. Rev. B 84, 035415 (2011). doi: 10.1103/PhysRevB.84.035415
[26] Dadap, J. I., Shan, J., Eisenthal, K. B. & Heinz, T. F. Second-harmonic rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett. 83, 4045–4048 (1999). doi: 10.1103/PhysRevLett.83.4045
[27] Wang, F. X. et al. Surface and bulk contributions to the second-order nonlinear optical response of a gold film. Phys. Rev. B 80, 233402 (2009). doi: 10.1103/PhysRevB.80.233402
[28] Capretti, A. et al. Multipolar second harmonic generation from planar arrays of Au nanoparticles. Opt. Express 20, 15797–15806 (2012). doi: 10.1364/OE.20.015797
[29] Kujala, S., Canfield, B. K., Kauranen, M., Svirko, Y. & Turunen, J. Multipolar analysis of second-harmonic radiation from gold nanoparticles. Opt. Express 16, 17196–17208 (2008). doi: 10.1364/OE.16.017196
[30] Russier-Antoine, I., Benichou, E., Bachelier, G., Jonin, C. & Brevet, P. F. Multipolar contributions of the second harmonic generation from silver and gold nanoparticles. J. Phys. Chem. C 111, 9044–9048 (2007). doi: 10.1021/jp0675025
[31] Bachelier, G., Russier-Antoine, I., Benichou, E., Jonin, C. & Brevet, P. F. Multipolar second-harmonic generation in noble metal nanoparticles. J. Opt. Soc. Am. B 25, 955–960 (2008). doi: 10.1364/JOSAB.25.000955
[32] Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003). doi: 10.1038/nbt899
[33] Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013). doi: 10.1038/nature12373
[34] Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015). doi: 10.1038/nn.4091
[35] Häusser, M. Optogenetics: the age of light. Nat. Methods 11, 1012–1014 (2014). doi: 10.1038/nmeth.3111
[36] Andrasfalvy, B. K., Zemelman, B. V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA 107, 11981–11986 (2010). doi: 10.1073/pnas.1006620107
[37] Papagiakoumou, E. et al. Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7, 848–854 (2010). doi: 10.1038/nmeth.1505
[38] Packer, A. M. et al. Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9, 1202–1205 (2012). doi: 10.1038/nmeth.2249
[39] Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012). doi: 10.1038/nmeth.2215
[40] Chaigneau, E. et al. Two-photon holographic stimulation of ReaChR. Front. Cell. Neurosci. 10, 234 (2016). doi: 10.3389/fncel.2016.00234
[41] Shemesh, O. A. et al. Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017). doi: 10.1038/s41593-017-0018-8
[42] Fino, E. et al. RuBi-Glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. Front. Neural Circuits 3, 2 (2009). doi: 10.3389/neuro.04.002.2009
[43] Izquierdo-Serra, M. et al. Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. J. Am. Chem. Soc. 136, 8693–8701 (2014). doi: 10.1021/ja5026326
[44] Yang, X., Rode, D. L., Peterka, D. S., Yuste, R. & Rothman, S. M. Optical control of focal epilepsy in vivo with caged γ-aminobutyric acid. Ann. Neurol. 71, 68–75 (2012). doi: 10.1002/ana.22596
[45] Scanziani, M. & Häusser, M. Electrophysiology in the age of light. Nature 461, 930–939 (2009). doi: 10.1038/nature08540
[46] Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006). doi: 10.1021/nl052396o
[47] Alivisatos, A. P. et al. Nanotools for neuroscience and brain activity mapping. ACS Nano 7, 1850–1866 (2013). doi: 10.1021/nn4012847
[48] Chithrani, B. D. & Chan, W. C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007). doi: 10.1021/nl070363y
[49] Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012). doi: 10.1038/nature10904
[50] Ni, D. et al. Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano 8, 1231–1242 (2014). doi: 10.1021/nn406197c
[51] Huang, X. & El-Sayed, M. A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010). doi: 10.1016/j.jare.2010.02.002
[52] Kumar C. S. S. R. Nanomaterials for Medical Diagnosis and Therapy (Wiley-VCH, Weinheim, 2007).
[53] Ting, J. T., Daigle, T. L., Chen, Q. & Feng, G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. In Patch-Clamp Methods and Protocols (eds Martina, M. & Taverna, S.) 221–242 (Springer, New York, 2014).
[54] Juliano C. E., Lin H. & Steele R. E. Generation of transgenic Hydra by embryo microinjection. J. Vis. Exp. 51888 (2014).
[55] Nikolenko, V., Nemet, B. & Yuste, R. A two-photon and second-harmonic microscope. Methods 30, 3–15 (2003). doi: 10.1016/S1046-2023(03)00003-3