[1] Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970). doi: 10.1103/PhysRevLett.24.156
[2] Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986). doi: 10.1364/OL.11.000288
[3] Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A. & Ashkin, A. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48–51 (1985). doi: 10.1103/PhysRevLett.55.48
[4] Chu, S., Bjorkholm, J. E., Ashkin, A. & Cable, A. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314–317 (1986). doi: 10.1103/PhysRevLett.57.314
[5] Ashkin, A. & Dziedzic, J. M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987). doi: 10.1126/science.3547653
[6] Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987). doi: 10.1038/330769a0
[7] Kepler, J. Ad Vitellionem Paralipomena (Francofurti, Apud Claudium Marnium & Haeredes loannis Aubrii, Frankfort, 1604).
[8] Kepler, J. De Cometis Libelli Tres (Avgvstae Vindelicorvm, A. Apergeri, Augsburg, 1619).
[9] Maxwell, J. C. A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865).
[10] Baxter, C. & Loudon, R. Radiation pressure and the photon momentum in dielectrics. J. Mod. Opt. 57, 830–842 (2010). doi: 10.1080/09500340.2010.487948
[11] Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990). doi: 10.1038/348348a0
[12] Yin, H. et al. Transcription against an applied force. Science 270, 1653–1657 (1995). doi: 10.1126/science.270.5242.1653
[13] Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997). doi: 10.1016/S0006-3495(97)78780-0
[14] Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003). doi: 10.1038/nature01935
[15] Grier, D. G. Optical tweezers in colloid and interface science. Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997). doi: 10.1016/S1359-0294(97)80034-9
[16] MacDonald, M. P., Spalding, G. C. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003). doi: 10.1038/nature02144
[17] Yin, Z. Q., Geraci, A. A. & Li, T. C. Optomechanics of levitated dielectric particles. Int J. Mod. Phys. B 27, 1330018 (2013). doi: 10.1142/S0217979213300181
[18] Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997). doi: 10.1103/PhysRevLett.79.645
[19] Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002). doi: 10.1016/S0030-4018(02)01524-9
[20] Ng, J., Lin, Z. F. & Chan, C. T. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 104, 103601 (2010). doi: 10.1103/PhysRevLett.104.103601
[21] Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013). doi: 10.1038/ncomms3374
[22] Simpson, N. B., Dholakia, K., Allen, L. & Padgett, M. J. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22, 52–54 (1997). doi: 10.1364/OL.22.000052
[23] Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011). doi: 10.1038/nphoton.2011.81
[24] Lee, S. H., Roichman, Y. & Grier, D. G. Optical solenoid beams. Opt. Express 18, 6988–6993 (2010). doi: 10.1364/OE.18.006988
[25] Sukhov, S. & Dogariu, A. On the concept of "tractor beams". Opt. Lett. 35, 3847–3849 (2010). doi: 10.1364/OL.35.003847
[26] Chen, J., Ng, J., Lin, Z. F. & Chan, C. T. Optical pulling force. Nat. Photon. 5, 531–534 (2011). doi: 10.1038/nphoton.2011.153
[27] Novitsky, A., Qiu, C. W. & Wang, H. Single gradientless light beam drags particles as tractor beams. Phys. Rev. Lett. 107, 203601 (2011). doi: 10.1103/PhysRevLett.107.203601
[28] Gao, D. L. et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6, e17039 (2017). doi: 10.1038/lsa.2017.39
[29] Ivinskaya, A. et al. Plasmon-assisted optical trapping and anti-trapping. Light Sci. Appl. 6, e16258 (2016).
[30] Bykov, D. S. et al. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre. Light Sci. Appl. 7, 22 (2018). doi: 10.1038/s41377-018-0015-z
[31] Geraci, A. A., Papp, S. B. & Kitching, J. Short-range force detection using optically cooled levitated microspheres. Phys. Rev. Lett. 105, 101101 (2010). doi: 10.1103/PhysRevLett.105.101101
[32] Arvanitaki, A. & Geraci, A. A. Detecting high-frequency gravitational waves with optically levitated sensors. Phys. Rev. Lett. 110, 071105 (2013). doi: 10.1103/PhysRevLett.110.071105
[33] Martínez, I. A. et al. Brownian Carnot engine. Nat. Phys. 12, 67–70 (2016). doi: 10.1038/nphys3518