[1] Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 7, 335-339 (2012). doi: 10.1038/nnano.2012.61
[2] Naderi, N. A. et al. Two-color multi-section quantum dot distributed feedback laser. Opt. Express 18, 27028-27035 (2010). doi: 10.1364/OE.18.027028
[3] Fujimoto, Y., Ishii, O. & Yamazaki, M. Multi-colour laser oscillation in Pr3+-doped fluoro-aluminate glass fibre pumped by 442.6 nm GaN-semiconductor laser. Electron Lett. 45, 1301-1302 (2009). doi: 10.1049/el.2009.1892
[4] Fan, F., Turkdogan, S., Liu, Z., Shelhammer, D. & Ning, C. Z. A monolithic white laser. Nat. Nanotechnol. 10, 796-803 (2015). doi: 10.1038/nnano.2015.149
[5] Tang, S. K. et al. A multi-color fast-switching microfluidic droplet dye laser. Lab. Chip. 9, 2767-2771 (2009). doi: 10.1039/b914066b
[6] Zhang, H. et al. Pyrene-cored starburst oligofluorenes with diphenylamine end-cappers: design, synthesis, stabilized optical gain, and lasing properties. J. Phys. Chem. C 121, 27569-27579. (2017). doi: 10.1021/acs.jpcc.7b08721
[7] Xu, W. D. et al. Pyrene-capped conjugated amorphous starbursts: synthesis, characterization, and stable lasing properties in ambient atmosphere. Adv. Funct. Mater. 25, 4617-4625 (2015). doi: 10.1002/adfm.201501337
[8] Fang, M. et al. Ladder-type oligo(p-phenylene)s with D-π-A architectures: design, synthesis, optical gain properties, and stabilized amplified spontaneous emission. J. Mater. Chem. C 5, 5797-5809. (2017). doi: 10.1039/C7TC00185A
[9] Liu, C. F. et al. Design and synthesis of monodisperse macromolecular starbursts based on a triazine center with multibranched oligofluorenes as efficient gain media for organic lasers. Macromolecules 51, 1325-1335 (2018). doi: 10.1021/acs.macromol.7b02204
[10] Neumann, A. et al. Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 19, A982-A990 (2011). doi: 10.1364/OE.19.00A982
[11] Wierer Jr, J. J., Tsao, J. Y. & Sizov, D. S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photonics Rev. 7, 963-993. (2013). doi: 10.1002/lpor.201300048
[12] Chellappan, K. V., Erden, E. & Urey, H. Laser-based displays: a review. Appl. Opt. 49, F79-F98 (2010). doi: 10.1364/AO.49.000F79
[13] Hayes, T. Laser projection takes its place in the spotlight. SPIE News (2016). http://optics.org/news/7/3/23
[14] Holz, M. & Senden, E. W. System for improving the visibility in vehicles. United States Patent 6, 552, 342 (2003). http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6552342.PN.&OS=PN/6552342&RS=PN/6552342
[15] Mori, T., Kim, H. G., Mizutani, T. & Lee, D. C. Electroluminescent properties in organic light-emitting diode doped with two guest dyes. Jpn. J. Appl. Phys. 40, 5346-5349 (2001). doi: 10.1143/JJAP.40.5346
[16] Lee, M. T. et al. Efficient green coumarin dopants for organic light-emitting devices. Org. Lett. 6, 1241-1244 (2004). doi: 10.1021/ol049903d
[17] Yamashita, K., Takeuchi, N., Oe, K. & Yanagi, H. Simultaneous RGB lasing from a single-chip polymer device. Opt. Lett. 35, 2451-2453 (2010). doi: 10.1364/OL.35.002451
[18] Savarese, M. et al. Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment. J. Phys. Chem. A 116, 7491-7497 (2012). doi: 10.1021/jp3021485
[19] Wolfbeis, O. S., Lippert, E. & Schwarz, H. pH-dependent fluorescence spectroscopy, 8[1]: photochemical reversible ring opening of 4-phenylumbelliferone. Ber. Bunsen Phys. Chem. 84, 1115-1119 (1980). doi: 10.1002/bbpc.19800841106
[20] Lu, L. D. & Jenekhe, S. A. Poly(vinyl diphenylquinoline): a new pH-tunable light-emitting and charge-transport polymer synthesized by a simple modification of polystyrene. Macromolecules 34, 6249-6254 (2001). doi: 10.1021/ma010086w
[21] Wolfbeis, O. S. & Schipfer, R. Acidity dependence of the absorption and fluorescence spectra of isoflavone and 7-hydroxyisoflavone. Photochem. Photobiol. 34, 567-571 (1981). doi: 10.1111/j.1751-1097.1981.tb09043.x
[22] Shank, C. V., Dienes, A., Trozzolo, A. M. & Myer, J. A. Near UV to yellow tunable laser emission from an organic dye. Appl. Phys. Lett. 16, 405-407. (1970). doi: 10.1063/1.1653044
[23] Schneider, D. et al. Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 85, 1886-1888 (2004). doi: 10.1063/1.1791742
[24] Kushida, S. et al. Self-assembled polycarbazole microspheres as single-component, white-colour resonant photoemitters. RSC Adv. 6, 52854-52857 (2016). doi: 10.1039/C6RA10662E
[25] Bush, T. E. & Scott, G. W. Fluorescence of distyrylbenzenes. J. Phys. Chem. 85, 144-146 (1981). doi: 10.1021/j150602a008
[26] Guerlin, A. et al. Tunable optical properties of chromophores derived from oligo(p-phenylene vinylene). Org. Lett. 12, 2382-2385 (2010). doi: 10.1021/ol1007263
[27] Sancho-Garcia, J. C. et al. Design of π-conjugated organic materials for one-dimensional energy transport in nanochannels. J. Phys. Chem. B 19, 4872-4880 (2005). doi: 10.1021/jp045364i
[28] Chaieb, A., Khoukh, A., Brown, R., François, J. & Dagron-Lartigau, C. Characterization of model luminescent PPV analogues with donating or withdrawing groups. Opt. Mater. 30, 318-327 (2007). doi: 10.1016/j.optmat.2006.11.052
[29] Ko, C. W. & Lin, H. C. Doped LED polymers containing novel luminescent bispyridyl compounds. Thin Solid Films 363, 81-85 (2000). doi: 10.1016/S0040-6090(99)01002-0
[30] Fukuda, T. et al. Transient response of blue organic electroluminescence devices with short fluorescence lifetime of substituted phenyl/vinyl compound as an emissive layer. Opt. Lett. 32, 1150-1152 (2007). doi: 10.1364/OL.32.001150
[31] Vagin, S. I., Ott, A. K., Hoffmann, S. D., Lanzinger, D. & Rieger, B. Synthesis and properties of (triptycenedicarboxylatio)zinc coordination networks. Chemistry 15, 5845-5853 (2009). doi: 10.1002/chem.200802691
[32] Shen, K., Qin, L. & Zheng, H. G. Diverse structures of metal-organic frameworks via a side chain adjustment: interpenetration and gas adsorption. Dalton Trans. 45, 16205-16210 (2016). doi: 10.1039/C6DT03086F
[33] Park, I. H. et al. Influence of interpenetration in diamondoid metal-organic frameworks on the photoreactivity and sensing properties. Cryst. Growth Des. 16, 2504-2508 (2016). doi: 10.1021/acs.cgd.6b00354
[34] Kabe, R., Nakanotani, H., Sakanoue, T., Yahiro, M. & Adachi, C. Effect of molecular morphology on amplified spontaneous emission of bis-styrylbenzene derivatives. Adv. Mater. 21, 4034-4038 (2009). doi: 10.1002/adma.200803588
[35] Wang, H. et al. Doped organic crystals with high efficiency, color-tunable emission toward laser application. Cryst. Growth Des. 9, 4945-4950 (2009). doi: 10.1021/cg9007125
[36] Fang, H. H. et al. Flexible lasers based on the microstructured single-crystalline ultrathin films. J. Mater. Chem. 22, 24139-24144 (2012). doi: 10.1039/c2jm35394f
[37] Ebeid, E. M., Abdel-Kader, M. H., Sabry, M. M. F. & Yousef, A. B. Photochemical and spectral behaviour of diolefinic laser dyes in microemulsion media. J. Photochem. Photobiol. A 44, 153-159 (1988). doi: 10.1016/1010-6030(88)80087-X
[38] Wang, X. D., Li, H., Wu, Y. S., Xu, Z. Z. & Fu, H. B. Tunable morphology of the self-assembled organic microcrystals for the efficient laser optical resonator by molecular modulation. J. Am. Chem. Soc. 136, 16602-16608 (2014). doi: 10.1021/ja5088503
[39] Lin, H. C., Tsai, C. M., Huang, G. H. & Tao, Y. T. Synthesis and characterization of light-emitting H-bonded complexes and polymers containing bis(pyridyl) emitting acceptors. Macromolecules 39, 557-568 (2006). doi: 10.1021/ma051967w
[40] Ebeid, E. Z. M. & Lees, A. J. Molecular association in flexible diolefinic dyes. J. Phys. Chem. 91, 5792-5795 (1987). doi: 10.1021/j100306a054
[41] Detert, H., Sadovski, O. & Sugiono, E. Acidochromism of C2 -symmetrical aza-analogues of 1, 4-distyrylbenzene. J. Phys. Org. Chem. 17, 1046-1050 (2004). doi: 10.1002/poc.811
[42] Ebeid, E. Z. M., Issa, R. M., Ghoneim, M. M. & El-Daly, S. A. Emission characteristics and micellization of cationic 1, 4-Bis(β-pyridyl-2-vinyl)benzene laser dye. J. Chem. Soc. Faraday Trans. 1 82, 909-919 (1986). doi: 10.1039/f19868200909
[43] Berezin, M. Y., Lee, H., Akers, W., Nikiforovich, G. & Achilefu, S. Ratiometric analysis of fluorescence lifetime for probing binding sites in albumin with near-infrared fluorescent molecular probes. Photochem. Photobiol. 83, 1371-1378 (2007). doi: 10.1111/j.1751-1097.2007.00173.x
[44] Al-Hazmy, S. M. et al. A new diolefinic laser dye: 2, 5-bis-2-(2-naphthyl) vinyl pyrazine (B2NVP). J. Photochem. Photobiol. A Chem. 122, 17-22 (1999). doi: 10.1016/S1010-6030(98)00435-3
[45] Lagoria, M. G. & Roman, E. S. How does light scattering affect luminescence? Fluorescence spectra and quantum yields in the solid phase. J. Chem. Educ. 79, 1362-1367 (2002). doi: 10.1021/ed079p1362
[46] Wilson, J. N. & Bunz, U. H. F. Switching of intramolecular charge transfer in cruciforms: metal ion sensing. J. Am. Chem. Soc. 127, 4124-4125 (2005). doi: 10.1021/ja050017n
[47] Zhang, J. B. et al. Remarkable fluorescence change based on the protonation-deprotonation control in organic crystals. Chem. Commun. 49, 3878-3880 (2013). doi: 10.1039/c3cc41171k
[48] Zhou, X. J., Chen, C., Ren, C. X., Sun, J. K. & Zhang, J. Tunable solid-state photoluminescence based on proton-triggered structural transformation of 4, 4'-bipyridinium derivative. J. Mater. Chem. C 1, 744-750 (2013). doi: 10.1039/C2TC00111J
[49] Grossmann, T. et al. Low-threshold conical microcavity dye lasers. Appl. Phys. Lett. 97, 063304 (2010). doi: 10.1063/1.3479532
[50] Min, B. et al. Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers. Appl. Phys. Lett. 89, 191124 (2006). doi: 10.1063/1.2387966
[51] Golovnin, I. V., Bakulin, A. A., Zapunidy, S. A., Nechvolodova, E. M. & Paraschuk, D. Y. Dramatic enhancement of photo-oxidation stability of a conjugated polymer in blends with organic acceptor. Appl. Phys. Lett. 92, 243311 (2008). doi: 10.1063/1.2945801
[52] Quast, H. & Schulze, J. Neopentylierung von phenolen und hydrochinonen. Eur. J. Org. Chem. 1990, 509-512 (1990).
[53] Doddi, S., Ramakrishna, B., Venkatesh, Y. & Bangal, P. R. Synthesis and spectral characterization of photoswitchable oligo(p-phenylenevinylene)-spiropyran dyad. RSC Adv. 5, 56855-56864 (2015). doi: 10.1039/C5RA06628J
[54] Iwase, Y., Kamada, K., Ohta, K. & Kondo, K. Synthesis and photophysical properties of new two-photon absorption chromophores containing a diacetylene moiety as the central π-bridge. J. Mater. Chem. 13, 1575-1581 (2003). doi: 10.1039/B211268J
[55] Guo, Y. M., Geng, W. & Sun, J. P. Layer-by-layer deposition of polyelectrolyte-polyelectrolyte complexes for multilayer film fabrication. Langmuir 25, 1004-1010 (2009). doi: 10.1021/la803479a