[1] Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603-614 (2010). doi: 10.1038/nmeth.1483
[2] Xu, M. H. & Wang, L. H. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006). doi: 10.1063/1.2195024
[3] Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219-227 (2015). doi: 10.1038/nphoton.2015.29
[4] Oraevsky A. A., Jacques S. L., Esenaliev R. O., Tittel F. K. Laser-based optoacoustic imaging in biological tissues. Proc. SPIE 2134, Laser-Tissue Interaction V; and Ultraviolet Radiation Hazards, SPIE, 1994, pp 122-128.
[5] Yoo, H. et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med. 17, 1680-1684 (2011). doi: 10.1038/nm.2555
[6] Choma, M., Sarunic, M., Yang, C. & Izatt, J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183-2189 (2003). doi: 10.1364/OE.11.002183
[7] Leitgeb, R., Hitzenberger, C. & Fercher, A. F. Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889-894 (2003). doi: 10.1364/OE.11.000889
[8] Langer, G., Buchegger, B., Jacak, J., Klar, T. A. & Berer, T. Frequency domain photoacoustic and fluorescence microscopy. Biomed. Opt. Express 7, 2692-2702 (2016). doi: 10.1364/BOE.7.002692
[9] Choi, S. S. et al. Wavelength-modulated differential photoacousticspectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring. J. Biophot 9, 388-395 (2016). doi: 10.1002/jbio.201500131
[10] Fan, Y., Mandelis, A., Spirou, G. & Vitkin, I. A. Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment. J. Acoust. Soc. Am. 116, 3523-3533 (2004). doi: 10.1121/1.1819393
[11] Kellnberger, S., Deliolanis, N. C., Queirós, D., Sergiadis, G. & Ntziachristos, V. In vivo frequency domain optoacoustic tomography. Opt. Lett. 37, 3423-3425 (2012). doi: 10.1364/OL.37.003423
[12] Lashkari, B., Sean Choi, S. S., Khosroshahi, M. E., Dovlo, E. & Mandelis, A. Simultaneous dual-wavelength photoacoustic radar imaging using waveform engineering with mismatched frequency modulated excitation. Opt. Lett. 40, 1145-1148 (2015). doi: 10.1364/OL.40.001145
[13] Telenkov, S., Mandelis, A., Lashkari, B. & Forcht, M. Frequency-domain photothermoacoustics: alternative imaging modality of biological tissues. J. Appl. Phys. 105, 102029 (2009). doi: 10.1063/1.3116136
[14] Sean Choi, S. S., Lashkari, B., Dovlo, E. & Mandelis, A. Wavelength-modulated differential photoacoustic radar imager (WM-DPARI): accurate monitoring of absolute hemoglobin oxygen saturation. Biomed. Opt. Express 7, 2586-2596 (2016). doi: 10.1364/BOE.7.002586
[15] Tserevelakis, G. J., Soliman, D., Omar, M. & Ntziachristos, V. Hybrid multiphoton and optoacoustic microscope. Opt. Lett. 39, 1819-1822 (2014). doi: 10.1364/OL.39.001819
[16] Nahamoo, D., Pan, S. X. & Kak, A. C. Synthetic aperature diffraction tomography and its interpolation-free computer implementation. IEEE Trans. Sonics Ultrason. 31, 218-229 (1984). doi: 10.1109/T-SU.1984.31502
[17] Stolt, R. H. Migration by Fourier-transform. Geophysics 43, 23-48 (1978). doi: 10.1190/1.1440826
[18] Telenkov, S. A. & Mandelis, A. Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue. J. Biomed. Opt. 11, 044006 (2006). doi: 10.1117/1.2337290
[19] Laser Institute of America, American National Standard for Safe Use of Lasers Standard Z136.1-2007.
[20] Mohajerani, P., Kellnberger, S. & Ntziachristos, V. Frequency domain optoacoustic tomography using amplitude and phase. Photoacoustics 2, 111-118 (2014). doi: 10.1016/j.pacs.2014.06.002
[21] Prahl S. A. Optical Absorption of Hemoglobin. Oregon Medical Laser Center: Portland, OR, USA, 1999. https://omlc.org/spectra/hemoglobin/index.html.
[22] Omar, M., Schwarz, M., Soliman, D., Symvoulidis, P. & Ntziachristos, V. Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM). Neoplasia 17, 208-214 (2015). doi: 10.1016/j.neo.2014.12.010
[23] Tong, Y., Zhao, H. C., Fang, H., Zhao, Y. Q. & Yuan, X. C. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation. AIP Adv. 6, 025109 (2016). doi: 10.1063/1.4942097
[24] Soliman D., Tserevelakis G. J., Omar M., Ntziachristos V. Combining microscopy with mesoscopy using optical and optoacoustic label-free modes. Sci Rep 2015; 5: 12902. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549672/
[25] Fang, H., Maslov, K. & Wang, L. V. Photoacoustic doppler effect from flowing small light-absorbing particles. Phys. Rev. Lett. 99, 184501 (2007). doi: 10.1103/PhysRevLett.99.184501
[26] Sheinfeld, A., Gilead, S. & Eyal, A. Photoacoustic Doppler measurement of flow using tone burst excitation. Opt. Express 18, 4212-4221 (2010). doi: 10.1364/OE.18.004212
[27] Ning, B. et al. Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow. Opt. Lett. 40, 910-913 (2015). doi: 10.1364/OL.40.000910
[28] Yao, J., Maslov, K. I., Shi, Y. F., Taber, L. A. & Wang, L. V. In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt. Lett. 35, 1419-1421 (2010). doi: 10.1364/OL.35.001419
[29] Omar, M., Gateau, J. & Ntziachristos, V. Raster-scan optoacoustic mesoscopy in the 25-125 MHz range. Opt. Lett. 38, 2472-2474 (2013). doi: 10.1364/OL.38.002472
[30] Seeger, M., Karlas, A., Soliman, D., Pelisek, J. & Ntziachristos, V. Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma. Photoacoustics 4, 102-111 (2016). doi: 10.1016/j.pacs.2016.07.001
[31] Maslov, K. & Wang, L. V. Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser. J. Biomed. Opt. 13, 024006 (2008). doi: 10.1117/1.2904965