[1] Ni, X. J., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi: 10.1038/ncomms3807
[2] Yang, Y. M. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics 11, 390-395 (2017). doi: 10.1038/nphoton.2017.64
[3] Zhao, Y. & Alu, A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B 84, 205428 (2011). doi: 10.1103/PhysRevB.84.205428
[4] Larouche, S., Tsai, Y. J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 11, 450-454 (2012). doi: 10.1038/nmat3278
[5] Ni, X. J., Ishii, S., Kildishev, A. V. & Shalaev, V. M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl. 2, e72 (2013). doi: 10.1038/lsa.2013.28
[6] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[7] Raman, A. P., Anoma, M. A., Zhu, L. X., Rephaeli, E. & Fan, S. H. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540-544 (2014). doi: 10.1038/nature13883
[8] Stewart, J. W., Akselrod, G. M., Smith, D. R. & Mikkelsen, M. H. Toward multispectral imaging with colloidal metasurface pixels. Adv. Mater. 29 (2017) https://doi.org/10.1002/adma.201602971.
[9] Grant, J., McCrindle, I. J. & Cumming, D. R. Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber. Opt. Expr. 24, 3451-3463 (2016). doi: 10.1364/OE.24.003451
[10] McCrindle, I. J. H., Grant, J., Drysdale, T. D. & Cumming, D. R. Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters. Opt. Expr. 21, 19142-19152 (2013). doi: 10.1364/OE.21.019142
[11] Liu, X. Y. & Padilla, W. J. Thermochromic infrared metamaterials. Adv. Mater. 28, 871-875 (2016). doi: 10.1002/adma.201504525
[12] Liu, X. Y. & Padilla, W. J. Reconfigurable room temperature metamaterial infrared emitter. Optica 4, 430-433 (2017). doi: 10.1364/OPTICA.4.000430
[13] Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, US, 2007).
[14] Halas, N. J., Lal, S., Chang, W. S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913-3961 (2011). doi: 10.1021/cr200061k
[15] Safaei, A. et al. Dynamically tunable extraordinary light absorption in monolayer graphene. Phys. Rev. B 96, 165431 (2017). doi: 10.1103/PhysRevB.96.165431
[16] Modak, S., Safaei, A. & Chanda, D. Cavity induced tunable extraordinary transmission: a unique way of funneling light through subwavelength apertures. https: //arxiv.org/abs/1710.00392 (2017).
[17] Vázquez-Guardado, A., Safaei, A., Modak, S., Franklin, D. & Chanda, D. Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances. Phys. Rev. Lett. 113, 263902 (2014). doi: 10.1103/PhysRevLett.113.263902
[18] Chanda, D. et al. Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat. Commun. 2, 479 (2011). doi: 10.1038/ncomms1487
[19] Keller, S., Blagoi, G., Lillemose, M., Haefliger, D. & Boisen, A. Processing of thin SU-8 films. J. Micromech. Microeng. 18, 125020 (2008). doi: 10.1088/0960-1317/18/12/125020
[20] Ashraf, S., Mattsson, C. G., Thungström, G. & Rödjegård, H. Design of a multilayered absorber structure based on SU-8 epoxy for broad and efficient absorption in Mid-IR sensitive thermal detectors. In 2014 IEEE Sensors (IEEE, Valencia, Spain, 2014).
[21] Tan, T. L. et al. Characterization of chemically amplified resist for X-ray lithography by Fourier transform infrared spectroscopy. Thin. Solid. Films. 504, 113-116 (2006). doi: 10.1016/j.tsf.2005.09.151
[22] Usamentiaga, R. et al. Infrared thermography for temperature measurement and non-destructive testing. Sensors 14, 12305-12348 (2014). doi: 10.3390/s140712305
[23] Lane, B. & Whitenton, E. P. Calibration and measurement procedures for a high magnification thermal camera. Report no. NISTIR8098 (National Institute of Standards and Technology, Gaithersburg, MD, 2015).