[1] Lippmann, G. La photographie intégrale. Comtes Rendus, Academie des Sciences. 446-451 (1908).
[2] Sokolov, A. P. Autostereoscopy and Integral Photography by Professor Lippmann's Method. (IZD MGU: Moscow State University Press, 1911).
[3] Okano, F. et al. Real-time pickup method for a three-dimensional image based on integral photography. Appl. Opt. 36, 1598-1603 (1997). doi: 10.1364/AO.36.001598
[4] Ren, H. et al. Super-multiview integral imaging scheme based on sparse camera array and CNN super-resolution. Appl. Opt. 58, A190-A196 (2019). doi: 10.1364/AO.58.00A190
[5] Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932-4936 (2012). doi: 10.1021/nl302516v
[6] Xu, H. X. et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces. Appl. Phys. Lett. 109, 193506 (2016). doi: 10.1063/1.4967438
[7] Chen, K. et al. A Reconfigurable active huygens' metalens. Adv. Mater. 29, 1606422 (2017). doi: 10.1002/adma.201606422
[8] West, P. R. et al. All-dielectric subwavelength metasurface focusing lens. Opt. Express 22, 26212-26221 (2014). doi: 10.1364/OE.22.026212
[9] Arbabi, A. et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015). doi: 10.1038/ncomms8069
[10] Li, R. Z. et al. Broadband, high-efficiency, arbitrary focusing lens by a holographic dielectric meta-reflectarray. J. Phys. D: Appl. Phys. 49, 145101 (2016). doi: 10.1088/0022-3727/49/14/145101
[11] Verslegers, L. et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235-238 (2009). doi: 10.1021/nl802830y
[12] Chen, X. Z. et al. Longitudinal multifoci metalens for circularly polarized light. Adv. Opt. Mater. 3, 1201-1206 (2015). doi: 10.1002/adom.201500110
[13] Ni, X. J. et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light.: Sci. Appl. 2, e72 (2013). doi: 10.1038/lsa.2013.28
[14] Chen, X. Z. et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012). doi: 10.1038/ncomms2207
[15] Chen, X. Z. et al. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens. Adv. Opt. Mater. 1, 517-521 (2013). doi: 10.1002/adom.201300102
[16] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644
[17] Khorasaninejad, M. et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229-7234 (2016). doi: 10.1021/acs.nanolett.6b03626
[18] Chen, W. T. et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett. 17, 3188-3194 (2017). doi: 10.1021/acs.nanolett.7b00717
[19] Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902-4907 (2017). doi: 10.1021/acs.nanolett.7b01888
[20] Zhan, A. L. et al. Metasurface freeform nanophotonics. Sci. Rep. 7, 1673 (2017). doi: 10.1038/s41598-017-01908-9
[21] Zhou, J. X. et al. Broadband photonic spin hall meta-lens. ACS Nano 12, 82-88 (2018). doi: 10.1021/acsnano.7b07379
[22] Fan, Z. B. et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl. 10, 014005 (2018). doi: 10.1103/PhysRevApplied.10.014005
[23] Colburn, S., Zhan, A. L. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 4, eaar2114 (2018). doi: 10.1126/sciadv.aar2114
[24] Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358-5362 (2015). doi: 10.1021/acs.nanolett.5b01727
[25] Aieta, F. et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342-1345 (2015). doi: 10.1126/science.aaa2494
[26] Arbabi, E. et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628-633 (2016). doi: 10.1364/OPTICA.3.000628
[27] Arbabi, E. et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Opt. Express 24, 18468-18477 (2016). doi: 10.1364/OE.24.018468
[28] Eisenbach, O. et al. Metasurfaces based dual wavelength diffractive lenses. Opt. Express 23, 3928-3936 (2015). doi: 10.1364/OE.23.003928
[29] Zhao, Z. Y. et al. Multispectral optical metasurfaces enabled by achromatic phase transition. Sci. Rep. 5, 15781 (2015). doi: 10.1038/srep15781
[30] Arbabi, E. et al. Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep. 6, 32803 (2016). doi: 10.1038/srep32803
[31] Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819-1824 (2017). doi: 10.1021/acs.nanolett.6b05137
[32] Arbabi, E. et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625-632 (2017). doi: 10.1364/OPTICA.4.000625
[33] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[34] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227-232 (2018). doi: 10.1038/s41565-017-0052-4
[35] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220-226 (2018). doi: 10.1038/s41565-017-0034-6
[36] Shrestha, S. et al. Broadband achromatic dielectric metalenses. Light.: Sci. Appl. 7, 85 (2018). doi: 10.1038/s41377-018-0078-x
[37] Chen, W. T. et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10, 355 (2019). doi: 10.1038/s41467-019-08305-y
[38] Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227-231 (2019). doi: 10.1038/s41565-018-0347-0
[39] Wang, Q. H. et al. Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher. Opt. Express 24, 9-16 (2016). doi: 10.1364/OE.24.000009
[40] Wang, X. R. & Hua, H. Theoretical analysis for integral imaging performance based on microscanning of a microlens array. Opt. Lett. 33, 449-451 (2008). doi: 10.1364/OL.33.000449
[41] Liu, V. & Fan, S. H. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233-2244 (2012). doi: 10.1016/j.cpc.2012.04.026
[42] Li, S. L. et al. Multiple orthographic frustum combing for real-time computer-generated integral imaging system. J. Disp. Technol. 10, 704-709 (2014). doi: 10.1109/JDT.2014.2315665