[1] Sangouard, N. et al. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33-44 (2011). doi: 10.1103/RevModPhys.83.33
[2] Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682-686 (2015). doi: 10.1038/nature15759
[3] Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015). doi: 10.1103/PhysRevLett.115.250402
[4] Tillmann, M. et al. Experimental boson sampling. Nat. Photonics 7, 540-544 (2013). doi: 10.1038/nphoton.2013.102
[5] Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794-798 (2013). doi: 10.1126/science.1231440
[6] Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798-801 (2013). doi: 10.1126/science.1231692
[7] Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500-1503 (2010). doi: 10.1126/science.1193515
[8] Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photonics 5, 222-229 (2011). doi: 10.1038/nphoton.2011.35
[9] Wang, J. W. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285-291 (2018). doi: 10.1126/science.aar7053
[10] Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nat. Phys. 3, 305-310 (2007). doi: 10.1038/nphys607
[11] Wang, X. L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516-519 (2015). doi: 10.1038/nature14246
[12] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644
[13] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227-232 (2018). doi: 10.1038/s41565-017-0052-4
[14] Yue, F. Y. et al. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558-1563 (2016). doi: 10.1021/acsphotonics.6b00392
[15] Shalaev, M. I. et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261-6266 (2015). doi: 10.1021/acs.nanolett.5b02926
[16] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[17] Li, G. X. et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 14, 607-612 (2015). doi: 10.1038/nmat4267
[18] Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016). doi: 10.1038/ncomms12533
[19] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139-150 (2014). doi: 10.1038/nmat3839
[20] Genevet, P. et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139-152 (2017). doi: 10.1364/OPTICA.4.000139
[21] Lin, D. M. et al. Dielectric gradient metasurface optical elements. Science 345, 298-302 (2014). doi: 10.1126/science.1253213
[22] Jha, P. K. et al. Metasurface-enabled remote quantum interference. Phys. Rev. Lett. 115, 025501 (2015). doi: 10.1103/PhysRevLett.115.025501
[23] Jha, P. K. et al. Metasurface-mediated quantum entanglement. ACS Photonics 5, 971-976 (2018). doi: 10.1021/acsphotonics.7b01241
[24] Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101-1104 (2018). doi: 10.1126/science.aat9042
[25] Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104-1108 (2018). doi: 10.1126/science.aat8196
[26] Liu, H. C. et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram. Sci. Adv. 3, e1701477 (2017). doi: 10.1126/sciadv.1701477
[27] Malik, M. & Boyd, R. W. Quantum imaging technologies. Riv. Nuovo Cim. 37, 273-332 (2014).
[28] Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017). doi: 10.1103/RevModPhys.89.035002
[29] O'Brien, J. L. Optical quantum computing. Science 318, 1567-1570 (2007). doi: 10.1126/science.1142892
[30] Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photonics 10, 248-252 (2016). doi: 10.1038/nphoton.2016.12
[31] Bomzon, Z. et al. Space-variant pancharatnam-berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141-1143 (2002). doi: 10.1364/OL.27.001141
[32] Dowling, J. P. Quantum optical metrology - the lowdown on high-N00N states. Contemp. Phys. 49, 125-143 (2008). doi: 10.1080/00107510802091298
[33] Grice, W. P. & Walmsley, I. A. Spectral information and distinguishability in type-II down-conversion with a broadband pump. Phys. Rev. A56, 1627-1634 (1997).
[34] Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205-2208 (1989). doi: 10.1103/PhysRevLett.62.2205
[35] Edamatsu, K., Shimizu, R. & Itoh, T. Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002). doi: 10.1103/PhysRevLett.89.213601