[1] Tomita, Y. et al. Long-term in vivo investigation of mouse cerebral microcirculation by fluorescence confocal microscopy in the area of focal ischemia. J. Cereb. Blood Flow. Metab. 25, 858-867 (2005). doi: 10.1038/sj.jcbfm.9600077
[2] Kerr, J. N. & Denk, W. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9, 195-205 (2008). doi: 10.1038/nrn2338
[3] Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205-209 (2013). doi: 10.1038/nphoton.2012.336
[4] Dombeck, D. A. et al. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43-57 (2007). doi: 10.1016/j.neuron.2007.08.003
[5] Kobat, D., Horton, N. G. & Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16, 106014 (2011). doi: 10.1117/1.3646209
[6] Davalos, D. et al. Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. J. Neurosci. Methods 169, 1-7 (2008). doi: 10.1016/j.jneumeth.2007.11.011
[7] König, K. et al. Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography. Laser Phys. Lett. 8, 465-468 (2011). doi: 10.1002/lapl.201110014
[8] Ulrich, M. & Lange-Asschenfeldt, S. In vivo confocal microscopy in dermatology: from research to clinical application. J. Biomed. Opt. 18, 061212 (2013). doi: 10.1117/1.JBO.18.6.061212
[9] Guitera, P. et al. In vivo reflectance confocal microscopy enhances secondary evaluation of melanocytic lesions. J. Invest. Dermatol. 129, 131-138 (2009). doi: 10.1038/jid.2008.193
[10] Guitera, P. et al. In vivo confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: analysis of 710 consecutive clinically equivocal cases. J. Invest. Dermatol. 132, 2386-2394 (2012). doi: 10.1038/jid.2012.172
[11] Nori, S. et al. Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study. J. Am. Acad. Dermatol. 51, 923-930 (2004). doi: 10.1016/j.jaad.2004.06.028
[12] Rajadhyaksha, M. et al. In vivo confocal scanning laser microscopy of human skin Ⅱ: advances in instrumentation and comparison with histology. J. Invest. Dermatol. 113, 293-303 (1999). doi: 10.1046/j.1523-1747.1999.00690.x
[13] Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713-719 (2017). doi: 10.1038/nmeth.4305
[14] Piyawattanametha, W. et al. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Opt. Lett. 34, 2309-2311 (2009). doi: 10.1364/OL.34.002309
[15] Liu, L. et al. MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan. Sens. Actuators A Phys. 215, 89-95 (2014). doi: 10.1016/j.sna.2013.09.035
[16] Fu, L. et al. Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror. Opt. Express 14, 1027-1032 (2006). doi: 10.1364/OE.14.001027
[17] Gilchrist, K. H. et al. Piezoelectric scanning mirrors for endoscopic optical coherence tomography. J. Micromech. Microeng. 19, 095012 (2009). doi: 10.1088/0960-1317/19/9/095012
[18] Piyawattanametha, W. & Wang, T. D. MEMS-based dual-axes confocal microendoscopy. IEEE J. Sel. Top. Quantum Electron. 16, 804-814 (2010). doi: 10.1109/JSTQE.2009.2032785
[19] Wang, Y. et al. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view. J. Micromech. Microeng. 22, 065001 (2012). doi: 10.1088/0960-1317/22/6/065001
[20] Liu, J. T. et al. Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner. Opt. Lett. 32, 256-258 (2007). doi: 10.1364/OL.32.000256
[21] Li, H. et al. Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging. Opt. Express 24, 2145-2155 (2016). doi: 10.1364/OE.24.002145
[22] Duan, X. et al. Three-dimensional side-view endomicroscope for tracking individual cells in vivo. Biomed. Opt. Express 8, 5533-5545 (2017). doi: 10.1364/BOE.8.005533
[23] Jia, K., Samuelson, S. R. & Xie, H. K. High-fill-factor micromirror array with hidden bimorph actuators and tip-tilt-piston capability. J. Microelectromech. Syst. 20, 573-582 (2011). doi: 10.1109/JMEMS.2011.2127449
[24] Liao, W. et al. A tip-tilt-piston micromirror with symmetrical lateral-shift-free piezoelectric actuators. IEEE Sens. J. 13, 2873-2881 (2013). doi: 10.1109/JSEN.2013.2264932
[25] Shao, Y., Dickensheets, D. L. & Himmer, P. 3-D MOEMS mirror for laser beam pointing and focus control. IEEE J. Sel. Top. Quantum Electron. 10, 528-535 (2004). doi: 10.1109/JSTQE.2004.828484
[26] Strathman, M. et al. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging. Opt. Express 21, 23934-23941 (2013). doi: 10.1364/OE.21.023934
[27] Liu, T. et al. MEMS 3-D scan mirror with SU-8 membrane and flexures for high NA microscopy. J. Microelectromech. Syst. 27, 719-729 (2018). doi: 10.1109/JMEMS.2018.2845375
[28] Morrison, J. et al. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability. Opt. Express 23, 9555-9566 (2015). doi: 10.1364/OE.23.009555
[29] Shin, H. J. et al. Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens. Opt. Express 15, 9113-9122 (2007). doi: 10.1364/OE.15.009113
[30] Maitland, K. C. et al. Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging. Opt. Express 14, 8604-8612 (2006). doi: 10.1364/OE.14.008604
[31] Arrasmith, C. L., Dickensheets, D. L. & Mahadevan-Jansen, A. MEMS-based handheld confocal microscope for in-vivo skin imaging. Opt. Express 18, 3805-3819 (2010). doi: 10.1364/OE.18.003805
[32] Kumar, K., Hoshino, K. & Zhang, X. Handheld subcellular-resolution single-fiber confocal microscope using high-reflectivity two-axis vertical combdrive silicon microscanner. Biomed. Microdevices 10, 653-660 (2008). doi: 10.1007/s10544-008-9176-5
[33] Murakami, K. A miniature confocal optical scanning microscope for endoscopes. Proceedings of SPIE 5721, MOEMS Display and Imaging Systems Ⅲ. San Jose, California, United States: SPIE, 2005.
[34] Bechtel, C. et al. Large field of view MEMS-based confocal laser scanning microscope for fluorescence imaging. Optik 125, 876-882 (2014). doi: 10.1016/j.ijleo.2013.07.091
[35] Chen, S. L. et al. A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components. Photoacoustics 1, 30-35 (2013). doi: 10.1016/j.pacs.2013.07.001
[36] Lu, C. D. et al. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed. Opt. Express 5, 293-311 (2014). doi: 10.1364/BOE.5.000293
[37] Duan, X. et al. MEMS-based multiphoton endomicroscope for repetitive imaging of mouse colon. Biomed. Opt. Express 6, 3074-3083 (2015). doi: 10.1364/BOE.6.003074
[38] Rouse, A. R. et al. Design and demonstration of a miniature catheter for a confocal microendoscope. Appl. Opt. 43, 5763-5771 (2004). doi: 10.1364/AO.43.005763
[39] Liang, C. et al. Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt. 41, 4603-4610 (2002). doi: 10.1364/AO.41.004603
[40] Kester, R. T. et al. High numerical aperture microendoscope objective for a fiber confocal reflectance microscope. Opt. Express 15, 2409-2420 (2007). doi: 10.1364/OE.15.002409
[41] Sun, J. et al. 3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror. Opt. Express 18, 12065-12075 (2010). doi: 10.1364/OE.18.012065
[42] Jung, W. et al. Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror. Appl. Phys. Lett. 88, 163901 (2006). doi: 10.1063/1.2195092
[43] Aguirre, A. D. et al. Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En face imaging. Opt. Express 15, 2445-2453 (2007). doi: 10.1364/OE.15.002445
[44] Mu, X. et al. MEMS micromirror integrated endoscopic probe for optical coherence tomography bioimaging. Sens. Actuators A Phys 168, 202-212 (2011). doi: 10.1016/j.sna.2011.03.040
[45] Wang, T. D. et al. Dual-axes confocal microscopy with post-objective scanning and low-coherence heterodyne detection. Opt. Lett. 28, 1915-1917 (2003). doi: 10.1364/OL.28.001915
[46] Wang, T. D. et al. Dual-axis confocal microscope for high-resolution in vivo imaging. Opt. Lett. 28, 414-416 (2003). doi: 10.1364/OL.28.000414
[47] Rajadhyaksha, M., Anderson, R. R. & Webb, R. H. Video-rate confocal scanning laser microscope for imaging human tissues in vivo. Appl. Opt. 38, 2105-2115 (1999). doi: 10.1364/AO.38.002105
[48] Ra, H. et al. Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope. Opt. Express 16, 7224-7232 (2008). doi: 10.1364/OE.16.007224
[49] Qiu, Z. et al. Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope. Biomed. Opt. Express 4, 322-330 (2013). doi: 10.1364/BOE.4.000322
[50] Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 6th edn. (Amsterdam: Elsevier, 2013).
[51] Knüttel, A. & Boehlau-Godau, M. Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. J. Biomed. Opt. 5, 83-92 (2000). doi: 10.1117/1.429972
[52] Bashkatov, A. N., Genina, E. A. & Tuchin, V. V. Optical properties of skin, subcutaneous, and muscle tissues: a review. J. Innov. Opt. Health Sci. 4, 9-38 (2011). doi: 10.1142/S1793545811001319
[53] Urey, H. Torsional MEMS scanner design for high-resolution scanning display systems. Opt. Scanning 4773, 27-38 (2002).
[54] Lukes, S. J. & Dickensheets, D. L. SU-8 2002 surface micromachined deformable membrane mirrors. J. Microelectromech. Syst. 22, 94-106 (2013). doi: 10.1109/JMEMS.2012.2215010
[55] Sung, K. et al. Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved. J. Microsc. 207, 137-145 (2002). MathSciNet doi: 10.1046/j.1365-2818.2002.01049.x
[56] Drezek, R. A. et al. Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid. Am. J. Obstet. Gynecol. 182, 1135-1139 (2000). doi: 10.1067/mob.2000.104844
[57] Liu, T. & Dickensheets, D. L. 3-Dimensional beam scanner for a handheld confocal dermoscope. 2016 International Conference on Optical MEMS and Nanophotonics. Singapore, (IEEE).
[58] Lukes, S. J. et al. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration. Appl. Opt. 55, 5208-5218 (2016). doi: 10.1364/AO.55.005208
[59] Wilson, T. & Carlini, A. R. Size of the detector in confocal imaging systems. Opt. Lett. 12, 227-229 (1987). doi: 10.1364/OL.12.000227