[1] Panganiban, B. et al. Random heteropolymers preserve protein function in foreign environments. Science 359, 1239–1243 (2018). doi: 10.1126/science.aao0335
[2] Korlach, J., Schwille, P., Webb, W. W. & Feigenson, G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA 96, 8461–8466 (1999). doi: 10.1073/pnas.96.15.8461
[3] Prince, R. C., Frontiera, R. R. & Potma, E. O. Stimulated Raman scattering: from bulk to nano. Chem. Rev. 117, 5070–5094 (2016). doi: 10.1021/acs.chemrev.6b00545
[4] Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999). doi: 10.1038/20154
[5] Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006). doi: 10.1063/1.2348781
[6] Raschke, M. B. & Lienau, C. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Appl. Phys. Lett. 83, 5089–5091 (2003). doi: 10.1063/1.1632023
[7] Nowak, D. et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2, e1501571 (2016). doi: 10.1126/sciadv.1501571
[8] Rajapaksa, I., Uenal, K. & Wickramasinghe, H. K. Image force microscopy of molecular resonance: a microscope principle. Appl. Phys. Lette 97, 073121 (2010). doi: 10.1063/1.3480608
[9] Jahng, J. et al. Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy. Acc. Chem. Res. 48, 2671–2679 (2015). doi: 10.1021/acs.accounts.5b00327
[10] Jahng, J. et al. Gradient and scattering forces in photoinduced force microscopy. Phys. Rev. B 90, 155417 (2014). doi: 10.1103/PhysRevB.90.155417
[11] Dazzi, A. & Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2016). doi: 10.1021/acs.chemrev.6b00448
[12] Lu, F., Jin, M. Z. & Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photon 8, 307–312 (2014). doi: 10.1038/nphoton.2013.373
[13] Wang, L. et al. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy. Sci. Adv. 3, e1700255 (2017). doi: 10.1126/sciadv.1700255
[14] Jahng J., Potma E. O. & Lee E. S. Tip-enhanced thermal expansion force for nanoscale chemical imaging and spectroscopy in photo-induced force microscopy. Anal. Chem. (2018) https://doi.org/10.1021/acs.analchem.8b02871.
[15] Lo, Y. S. et al. Organic and inorganic contamination on commercial AFM cantilevers. Langmuir 15, 6522–6526 (1999). doi: 10.1021/la990371x
[16] Sirghi, L., Kylián, O., Gilliland, D., Ceccone, G. & Rossi, F. Cleaning and hydrophilization of atomic force microscopy silicon probes. J. Phys. Chem. B 110, 25975–25981 (2006). doi: 10.1021/jp063327g
[17] Jahng, J., Kim, B., Lee, E. S. & Potma, E. O. Quantitative analysis of sideband coupling in photoinduced force microscopy. Phys. Rev. B 94, 195407 (2016). doi: 10.1103/PhysRevB.94.195407
[18] Yang, H. U. & Raschke, M. B. Resonant optical gradient force interaction for nano-imaging and-spectroscopy. New J. Phys. 18, 053042 (2016). doi: 10.1088/1367-2630/18/5/053042
[19] Chandler-Horowitz, D. & Amirtharaj, P. M. High-accuracy, midinfrared (450 cm−1≤ ω≤ 4000 cm−1) refractive index values of silicon. J. Appl. Phys. 97, 123526 (2005). doi: 10.1063/1.1923612
[20] Querry, M. Optical constants of minerals and other materials from the millimeter to the ultraviolet. Chemical Research Development and Engineering Center Aberdeen Proving Groundmd, Defense Technical Information Center; CRDEC-CR-88009 (1987).
[21] Babar, S. & Weaver, J. H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54, 477–481 (2015). doi: 10.1364/AO.54.000477
[22] Pimbley, J. M. & Katz, W. Infrared optical constants of PtSi. Appl. Phys. Lett. 42, 984–986 (1983). doi: 10.1063/1.93823
[23] Tompkins, H. G. & Hilfiker, J. N. in Spectroscopic Ellipsometry: Practical Application to Thin Film Characterization (Momentum Press, New York, 2015).
[24] Hilfiker, J. N. et al. Determining thickness and refractive index from free-standing ultra-thin polymer films with spectroscopic ellipsometry. Appl. Surf. Sci. 421, 508–512 (2017). doi: 10.1016/j.apsusc.2016.08.131
[25] Bewig, K. W. & Zisman, W. A. Surface potentials and induced polarization in nonpolar liquids adsorbed on metals. J. Phys. Chem. 68, 1804–1813 (1964). doi: 10.1021/j100789a023
[26] Vera-Graziano, R., Muhl, S. & Rivera-Torres, F. The effect of illumination on the contact angles of pure water on amorphous silicon. J. Coll. Interf. Sci. 155, 360–368 (1993). doi: 10.1006/jcis.1993.1047
[27] Jitian, S. Determination of optical constants of polystyrene films from ir reflection-absorption spectra. An. Univ. Eftimie Murgu Reşiţa. Fasc. De. Ing. 18, 41–48 (2011).
[28] Tański, T., Matysiak, W. & Hajduk, B. Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles. Beilstein J. Nanotechnol. 7, 1141–1155 (2016). doi: 10.3762/bjnano.7.106
[29] Baillis, D., Coquard, R. & Moura, L. M. Heat transfer in cellulose-based aerogels: analytical modelling and measurements. Energy 84, 732–744 (2015). doi: 10.1016/j.energy.2015.03.039
[30] Jiang, E. et al. Cellulose nanofibers as rheology modifiers and enhancers of carbonization efficiency in polyacrylonitrile. ACS Sustain. Chem. Eng. 5, 3296–3304 (2017).
[31] Vidotti, H. A. et al. Flexural properties of experimental nanofiber reinforced composite are affected by resin composition and nanofiber/resin ratio. Dent. Mater. 31, 1132–1141 (2015). doi: 10.1016/j.dental.2015.06.018
[32] Urbanetto Peres, B. Experimental Dental Composites with Electrospun Nanofibers and Nanofibrous Composites (University of British Columbia at Vancouver in Canada, 2016).
[33] Rubin, M. Optical properties of soda lime silica glasses. Sol. Energy Mater. 12, 275–288 (1985). doi: 10.1016/0165-1633(85)90052-8