[1] Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflüg. Arch. 391, 85-100 (1981). doi: 10.1007/BF00656997
[2] Margrie, T. W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflüg. Arch. 444, 491-498 (2002). doi: 10.1007/s00424-002-0831-z
[3] Thomas, Jr et al. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res 74, 61-66 (1972). doi: 10.1016/0014-4827(72)90481-8
[4] Csicsvari, J. et al. Massively parallel recording of unit and local field potentials with silicon-based electrodes. J. Neurophysiol. 90, 1314-1323 (2003). doi: 10.1152/jn.00116.2003
[5] Jones, K. E., Campbell, P. K. & Normann, R. A. A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20, 423-437 (1992). doi: 10.1007/BF02368134
[6] Ohki, K., Chung, S., Ch'ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597-603 (2005). doi: 10.1038/nature03274
[7] Salzberg, B. M., Obaid, A. L., Senseman, D. M. & Gainer, H. Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature 306, 36-40 (1983). doi: 10.1038/306036a0
[8] Kralj, J. M., Douglass, A. D., Hochbaum, D. R., Maclaurin, D. & Cohen, A. E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90-95 (2012). doi: 10.1038/nmeth.1782
[9] Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825-833 (2014). doi: 10.1038/nmeth.3000
[10] Wilt, B. A., Fitzgerald, J. E. & Schnitzer, M. J. Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing. Biophys. J. 104, 51-62 (2013). doi: 10.1016/j.bpj.2012.07.058
[11] Scanziani, M. & Häusser, M. Electrophysiology in the age of light. Nature 461, 930-939 (2009). doi: 10.1038/nature08540
[12] Keren, K. et al. Mechanism of shape determination in motile cells. Nature 453, 475-480 (2008). doi: 10.1038/nature06952
[13] Gauthier, N. C., Masters, T. A. & Sheetz, M. P. Mechanical feedback between membrane tension and dynamics. Trends Cell Biol. 22, 527-535 (2012). doi: 10.1016/j.tcb.2012.07.005
[14] Sens, P. & Plastino, J. Membrane tension and cytoskeleton organization in cell motility. J. Phys. Condens. Matter 27, 273103 (2015). doi: 10.1088/0953-8984/27/27/273103
[15] Zhang, P. C., Keleshian, A. M. & Sachs, F. Voltage-induced membrane movement. Nature 413, 428-432 (2001). doi: 10.1038/35096578
[16] Holthuis, J. C. M. & Menon, A. K. Lipid landscapes and pipelines in membrane homeostasis. Nature 510, 48-57 (2014). doi: 10.1038/nature13474
[17] Savtchenko, L. P., Poo, M. M. & Rusakov, D. A. Electrodiffusion phenomena in neuroscience: a neglected companion. Nat. Rev. Neurosci. 18, 598-612 (2017). doi: 10.1038/nrn.2017.101
[18] Petrov, A. G. & Sachs, F. Flexoelectricity and elasticity of asymmetric biomembranes. Phys. Rev. E 65, 021905 (2002). doi: 10.1103/PhysRevE.65.021905
[19] Hill, B., Schubert, E. D., Nokes, M. A. & Michelson, R. P. Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential. Science 196, 426-428 (1977). doi: 10.1126/science.850785
[20] Fang-Yen, C., Chu, M. C., Seung, H. S., Dasari, R. R. & Feld, M. S. Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer. Opt. Lett. 29, 2028-2030 (2004). doi: 10.1364/OL.29.002028
[21] Akkin, T., Landowne, D. & Sivaprakasam, A. Optical coherence tomography phase measurement of transient changes in squid giant axons during activity. J. Membr. Biol. 231, 35-46 (2009). doi: 10.1007/s00232-009-9202-4
[22] LaPorta, A. & Kleinfeld, D. Interferometric detection of action potentials. Cold Spring Harb. Protoc. 2012, 307-311 (2012).
[23] Iwasa, K., Tasaki, I. & Gibbons, R. C. Swelling of nerve fibers associated with action potentials. Science 210, 338-339 (1980). doi: 10.1126/science.7423196
[24] Kim, G. H., Kosterin, P., Obaid, A. L. & Salzberg, B. M. A mechanical spike accompanies the action potential in mammalian nerve terminals. Biophys. J. 92, 3122-3129 (2007). doi: 10.1529/biophysj.106.103754
[25] Nguyen, T. D. et al. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 7, 587-593 (2012). doi: 10.1038/nnano.2012.112
[26] Popescu, G., Ikeda, T., Dasari, R. R. & Feld, M. S. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775-777 (2006). doi: 10.1364/OL.31.000775
[27] Bhaduri, B. et al. Diffraction phase microscopy: principles and applications in materials and life sciences. Adv. Opt. Photon 6, 57-119 (2014). doi: 10.1364/AOP.6.000057
[28] Goetz, G. et al. Interferometric mapping of material properties using thermal perturbation. Proc. Natl Acad. Sci. USA 115, E2499-E2508 (2018). doi: 10.1073/pnas.1712763115
[29] Oh, S. et al. Label-free imaging of membrane potential using membrane electromotility. Biophys. J. 103, 11-18 (2012). doi: 10.1016/j.bpj.2012.05.020
[30] Batabyal, S. et al. Label-free optical detection of action potential in mammalian neurons. Biomed. Opt. Express 8, 3700-3713 (2017). doi: 10.1364/BOE.8.003700
[31] Schürmann, M., Scholze, J., Müller, P., Guck, J. & Chan, C. J. Cell nuclei have lower refractive index and mass density than cytoplasm. J. Biophotonics 9, 1068-1076 (2016). doi: 10.1002/jbio.201500273
[32] Steelman, Z. A., Eldridge, W. J., Weintraub, J. B. & Wax, A. Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies. J. Biophotonics 10, 1714-1722 (2017). doi: 10.1002/jbio.201600314
[33] Locquin, M. & Langeron, M. Handbook of Microscopy. (Elsevier, Amsterdam, 2013).
[34] Yang, Y. Z. et al. Imaging action potential in single mammalian neurons by tracking the accompanying sub-nanometer mechanical motion. ACS Nano 12, 4186-4193 (2018). doi: 10.1021/acsnano.8b00867
[35] Park, J. et al. Screening fluorescent voltage indicators with spontaneously spiking HEK cells. PLoS ONE 8, e85221 (2013). doi: 10.1371/journal.pone.0085221
[36] McNamara, H. M., Zhang, H. K., Werley, C. A. & Cohen, A. E. Optically controlled oscillators in an engineered bioelectric tissue. Phys. Rev. X 6, 031001 (2016).
[37] Hosseini, P. et al. Pushing phase and amplitude sensitivity limits in interferometric microscopy. Opt. Lett. 41, 1656-1659 (2016). doi: 10.1364/OL.41.001656
[38] Richards, M. A. Fundamentals of Radar Signal Processing. (McGraw-Hill, New York, 2005).
[39] Lodish, H. et al. Molecular Cell Biology. 4th edn, (W.H. Freeman, New York, 2000).
[40] Berlind, T., Pribil, G. K., Thompson, D., Woollam, J. A. & Arwin, H. Effects of ion concentration on refractive indices of fluids measured by the minimum deviation technique. Phys. Status Solidi (C.) 5, 1249-1252 (2008). doi: 10.1002/pssc.200777897
[41] Catterall, W. A., Wisedchaisri, G. & Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 13, 455-463 (2017). doi: 10.1038/nchembio.2353
[42] Rappaz, B. et al. Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express 13, 9361-9373 (2005). doi: 10.1364/OPEX.13.009361
[43] Boss, D. et al. Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy. J. Biomed. Opt. 18, 036007 (2013). doi: 10.1117/1.JBO.18.3.036007
[44] Juffmann, T., Klopfer, B. B., Frankort, T. L. I., Haslinger, P. & Kasevich, M. A. Multi-pass microscopy. Nat. Commun. 7, 12858 (2016). doi: 10.1038/ncomms12858
[45] de Boer, J. F. et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067-2069 (2003). doi: 10.1364/OL.28.002067
[46] Pham, H. V., Edwards, C., Goddard, L. L. & Popescu, G. Fast phase reconstruction in white light diffraction phase microscopy. Appl. Opt. 52, A97-A101 (2013). doi: 10.1364/AO.52.000A97
[47] Litke, A. M. et al. What does the eye tell the brain?: development of a system for the large-scale recording of retinal output activity. IEEE Trans. Nucl. Sci. 51, 1434-1440 (2004). doi: 10.1109/TNS.2004.832706
[48] Hottowy, P. et al. Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue. J. Neural Eng. 9, 066005 (2012). doi: 10.1088/1741-2560/9/6/066005