[1] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[2] Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012). doi: 10.1038/nmat3292
[3] Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009
[4] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014). doi: 10.1038/nmat3839
[5] Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photon 8, 889–898 (2014). doi: 10.1038/nphoton.2014.247
[6] Chen, H. T., Taylor, A. J. & Yu, N. F. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016). doi: 10.1088/0034-4885/79/7/076401
[7] Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017). doi: 10.1364/OPTICA.4.000139
[8] Deng, Z. L. et al. Diatomic metasurface for vectorial holography. Nano. Lett. 18, 2885–2892 (2018). doi: 10.1021/acs.nanolett.8b00047
[9] Li, G. X., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017). doi: 10.1038/natrevmats.2017.10
[10] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015). doi: 10.1038/nnano.2015.2
[11] Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015). doi: 10.1038/nnano.2015.186
[12] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015). doi: 10.1038/ncomms9241
[13] Wang, L. et al. Grayscale transparent metasurface holograms. Optica 3, 1504–1505 (2016). doi: 10.1364/OPTICA.3.001504
[14] Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901
[15] Wen, D. D. et al. Metasurface device with helicity-dependent functionality. Adv. Opt. Mater. 4, 321–327 (2016). doi: 10.1002/adom.201500498
[16] Cai, T. et al. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Phys. Rev. Appl. 8, 034033 (2017). doi: 10.1103/PhysRevApplied.8.034033
[17] Deng, Z. L., Cao, Y. Y., Li, X. P. & Wang, G. P. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure. Photonics Res 6, 443–450 (2018). doi: 10.1364/PRJ.6.000443
[18] Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494
[19] Deng, Z. L., Zhang, S. & Wang, G. P. Wide-angled off-axis achromatic metasurfaces for visible light. Opt. Express 24, 23118–23128 (2016). doi: 10.1364/OE.24.023118
[20] Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano. Lett. 17, 1819–1824 (2017). doi: 10.1021/acs.nanolett.6b05137
[21] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[22] Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano. Lett. 16, 5235–5240 (2016). doi: 10.1021/acs.nanolett.6b02326
[23] Wan, W. W., Gao, J. & Yang, X. D. Full-color plasmonic metasurface holograms. ACS Nano. 10, 10671–10680 (2016). doi: 10.1021/acsnano.6b05453
[24] Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016). doi: 10.1126/sciadv.1601102
[25] Fedotov, V. A. et al. Wavevector selective metasurfaces and tunnel vision filters. Light Sci. Appl. 4, e306 (2015). doi: 10.1038/lsa.2015.79
[26] Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644
[27] Khorasaninejad, M. et al. Polarization-insensitive metalenses at visible wavelengths. Nano. Lett. 16, 7229–7234 (2016). doi: 10.1021/acs.nanolett.6b03626
[28] Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015). doi: 10.1038/ncomms8069
[29] Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016). doi: 10.1364/OPTICA.3.000628
[30] Wintz, D., Genevet, P., Ambrosio, A., Woolf, A. & Capasso, F. Holographic metalens for switchable focusing of surface plasmons. Nano. Lett. 15, 3585–3589 (2015). doi: 10.1021/acs.nanolett.5b01076
[31] Ni, X. J., Ishii, S., Kildishev, A. V. & Shalaev, V. M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl. 2, e72 (2013). doi: 10.1038/lsa.2013.28
[32] Zhao, Y. & Alù, A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B 84, 205428 (2011). doi: 10.1103/PhysRevB.84.205428
[33] Yu, N. F. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano. Lett. 12, 6328–6333 (2012). doi: 10.1021/nl303445u
[34] Wu, P. C. et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano. Lett. 17, 445–452 (2017). doi: 10.1021/acs.nanolett.6b04446
[35] Li, T. Y., Huang, L. L., Liu, J., Wang, Y. T. & Zentgraf, T. Tunable wave plate based on active plasmonic metasurfaces. Opt. Express 25, 4216–4226 (2017). doi: 10.1364/OE.25.004216
[36] Pfeiffer, C. & Grbic, A. Cascaded metasurfaces for complete phase and polarization control. Appl. Phys. Lett. 102, 231116 (2013). doi: 10.1063/1.4810873
[37] Li, J. X. et al. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv. Funct. Mater. 25, 704–710 (2015). doi: 10.1002/adfm.201403669
[38] Lin, J., Genevet, P., Kats, M. A., Antoniou, N. & Capasso, F. Nanostructured holograms for broadband manipulation of vector beams. Nano. Lett. 13, 4269–4274 (2013). doi: 10.1021/nl402039y
[39] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[40] Ni, X. J., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi: 10.1038/ncomms3807
[41] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano. Lett. 15, 3122–3127 (2015). doi: 10.1021/acs.nanolett.5b00184
[42] Li, Z. L. et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light. ACS Nano. 11, 9382–9389 (2017). doi: 10.1021/acsnano.7b04868
[43] Yue, F. Y. et al. High-resolution grayscale image hidden in a laser beam. Light Sci. Appl. 7, 17129 (2018). doi: 10.1038/lsa.2017.129
[44] Deng, Z. L. & Li, G. X. Metasurface optical holography. Mater. Today Phys. 3, 16–32 (2017). doi: 10.1016/j.mtphys.2017.11.001
[45] Wang S. C., et al. Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron Adv. https://doi.org/10.29026/oea.2018.170002. (2008).
[46] Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).
[47] Deng, Z. L., Zhang, S. & Wang, G. P. A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces. Nanoscale 8, 1588–1594 (2016). doi: 10.1039/C5NR07181J
[48] Lee, W. H. Binary computer-generated holograms. Appl. Opt. 18, 3661–3669 (1979). doi: 10.1364/AO.18.003661
[49] Khorasaninejad, M. & Capasso, F. Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters. Nano. Lett. 15, 6709–6715 (2015). doi: 10.1021/acs.nanolett.5b02524
[50] Estakhri, N. M., Neder, V., Knight, M. W., Polman, A. & Alù, A. Visible light, wide-angle graded metasurface for back reflection. ACS Photonics 4, 228–235 (2017). doi: 10.1021/acsphotonics.6b00965
[51] Khaidarov, E. et al. Asymmetric nanoantennas for ultrahigh angle broadband visible light bending. Nano. Lett. 17, 6267–6272 (2017). doi: 10.1021/acs.nanolett.7b02952
[52] Sell, D., Yang, J. J., Doshay, S., Yang, R. & Fan, J. A. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano. Lett. 17, 3752–3757 (2017). doi: 10.1021/acs.nanolett.7b01082
[53] Ra'di, Y., Sounas, D. L. & Alù, A. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys. Rev. Lett. 119, 067404 (2017). doi: 10.1103/PhysRevLett.119.067404
[54] Ra'di, Y. & Alù, A. Reconfigurable metagratings. ACS Photonics 5, 1779–1785 (2018). doi: 10.1021/acsphotonics.7b01528
[55] Chong, K. E. et al. Efficient polarization-insensitive complex wavefront control using huygens' metasurfaces based on dielectric resonant meta-atoms. ACS Photonics 3, 514–519 (2016). doi: 10.1021/acsphotonics.5b00678
[56] Palik, E. D. Handbook of Optical Constants of Solids.. (Academic Press, San Diego, 1998).
[57] Li, X. P. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015). doi: 10.1038/ncomms7984
[58] Li, X. P., Zhang, Q. M., Chen, X. & Gu, M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci. Rep. 3, 2819 (2013). doi: 10.1038/srep02819
[59] Huang, K. et al. Photon-nanosieve for ultrabroadband and large-angle-of-view holograms. Laser Photonics Rev. 11, 1700025 (2017). doi: 10.1002/lpor.201700025
[60] min, C. J. et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photonics Rev. 10, 978–985 (2016). doi: 10.1002/lpor.201600101
[61] Xie, Z. W. et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics 4, 2158–2164 (2017). doi: 10.1021/acsphotonics.7b00710
[62] Khorasaninejad, M., Ambrosio, A., Kanhaiya, P. & Capasso, F. Broadband and chiral binary dielectric meta-holograms. Sci. Adv. 2, e1501258 (2016). doi: 10.1126/sciadv.1501258