[1] Tongay, S. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014). doi: 10.1038/ncomms4252
[2] Chenet, D. A. et al. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 15, 5667-5672 (2015). doi: 10.1021/acs.nanolett.5b00910
[3] Feng, Y. Q. et al. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B 92, 054110 (2015). doi: 10.1103/PhysRevB.92.054110
[4] Aslan, O. B., Chenet, D. A., van der Zande, A. M., Hone, J. C. & Heinz, T. F. Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics 3, 96-101 (2016). doi: 10.1021/acsphotonics.5b00486
[5] He, R. et al. Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy. Nano Lett. 16, 1404-1409 (2016). doi: 10.1021/acs.nanolett.5b04925
[6] Qiao, X. F. et al. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 8, 8324-8332 (2016). doi: 10.1039/C6NR01569G
[7] Cui, Q. N., Muniz, R. A., Sipe, J. E. & Zhao, H. Strong and anisotropic third-harmonic generation in monolayer and multilayer ReS2. Phys. Rev. B 95, 165406 (2017). doi: 10.1103/PhysRevB.95.165406
[8] Yu, Z. G., Cai, Y. Q. & Zhang, Y. W. Robust direct bandgap characteristics of one- and two-dimensional ReS2. Sci. Rep. 5, 13783 (2015). doi: 10.1038/srep13783
[9] Park, J. Y. et al. Contact effect of ReS2/metal interface. ACS Appl. Mater. Interfaces 9, 26325-26332 (2017). doi: 10.1021/acsami.7b06432
[10] Dhakal, K. P. et al. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6, 13028-13035 (2014). doi: 10.1039/C4NR03703K
[11] Dhakal, K. P. et al. Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 29, 5124-5133 (2017). doi: 10.1021/acs.chemmater.7b00453
[12] Shinde, S. M. et al. Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Mater. 10, e468 (2018). doi: 10.1038/am.2017.226
[13] Li, Y. L. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329-3333 (2013). doi: 10.1021/nl401561r
[14] Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611-617 (2014). doi: 10.1038/nnano.2014.148
[15] Jiang, T. et al. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 9, 825-829 (2014). doi: 10.1038/nnano.2014.176
[16] Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F. & de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401 (2013). doi: 10.1103/PhysRevB.87.201401
[17] Zhao, M. et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light: Sci. Appl. 5, e16131 (2016). doi: 10.1038/lsa.2016.131
[18] Jang, H. et al. Transient SHG imaging on ultrafast carrier dynamics of MoS2 nanosheets. Adv. Mater. 30, 1705190 (2018). doi: 10.1002/adma.201705190
[19] Mak, K. F., He, K. L., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494-498 (2012). doi: 10.1038/nnano.2012.96
[20] Gehlmann, M. et al. Direct observation of the band gap transition in atomically thin ReS2. Nano Lett. 17, 5187-5192 (2017). doi: 10.1021/acs.nanolett.7b00627
[21] Cui, Q. N. et al. Transient absorption measurements on anisotropic monolayer ReS2. Small 11, 5565-5571 (2015). doi: 10.1002/smll.201501668
[22] Sim, S. et al. Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2. Nat. Commun. 7, 13569 (2016). doi: 10.1038/ncomms13569
[23] Mannebach, E. M. et al. Ultrafast electronic and structural response of monolayer MoS2 under intense photoexcitation conditions. ACS Nano 8, 10734-10742 (2014). doi: 10.1021/nn5044542
[24] Dyakonov, M. I. Spin Physics in Semiconductors. 379 (Springer, Berlin, Heidelberg, 2008).
[25] Beams, R. et al. Characterization of few-layer 1T' MoTe2 by polarization-resolved second harmonic generation and Raman scattering. ACS Nano 10, 9626-9636 (2016). doi: 10.1021/acsnano.6b05127
[26] Cui, F. F. et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 28, 5019-5024 (2016). doi: 10.1002/adma.201600722
[27] Lin, Y. C. et al. Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 9, 11249-11257 (2015). doi: 10.1021/acsnano.5b04851
[28] Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 5, 4543 (2014). doi: 10.1038/ncomms5543
[29] Glezer, E. N., Siegal, Y., Huang, L. & Mazur, E. Behavior of χ (2) during a laser-induced phase transition in GaAS. Phys. Rev. B 51, 9589-9596 (1995). doi: 10.1103/PhysRevB.51.9589
[30] Shumay, I. L. & Höfer, U. Phase transformations of an InSb surface induced by strong femtosecond laser pulses. Phys. Rev. B 53, 15878-15884 (1996). doi: 10.1103/PhysRevB.53.15878
[31] Trinh, M. T., Wu, X. X., Niesner, D. & Zhu, X. Y. Many-body interactions in photo-excited lead iodide perovskite. J. Mater. Chem. A 3, 9285-9290 (2015). doi: 10.1039/C5TA01093D
[32] Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics 9, 466 (2015). doi: 10.1038/nphoton.2015.104
[33] Wang, H. N., Zhang, C. J. & Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 15, 339-345 (2015). doi: 10.1021/nl503636c
[34] Wang, H. N., Zhang, C. J. & Rana, F. Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett. 15, 8204-8210 (2015). doi: 10.1021/acs.nanolett.5b03708
[35] Sun, D. Z. et al. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625-5629 (2014). doi: 10.1021/nl5021975
[36] Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013). doi: 10.1038/srep02657
[37] Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). doi: 10.1016/0927-0256(96)00008-0
[38] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). doi: 10.1103/PhysRevLett.77.3865
[39] Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133-A1138 (1965). doi: 10.1103/PhysRev.140.A1133
[40] Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188-5192 (1976). doi: 10.1103/PhysRevB.13.5188
[41] Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505-1509 (1998). doi: 10.1103/PhysRevB.57.1505