[1] Schaffer, M., Große, M., Harendt, B. & Kowarschik, R. Coherent two-beam interference fringe projection for highspeed three-dimensional shape measurements. Appl. Opt. 52, 2306–2311 (2013). doi: 10.1364/AO.52.002306
[2] Große, M., Schaffer, M., Harendt, B. & Kowarschik, R. Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding. Opt. Eng. 50, 100503 (2011). doi: 10.1117/1.3646100
[3] Lutzke, P., Schaffer, M., Kühmstedt, P., Kowarschik, R. & Notni, G. Experimental comparison of phase-shifting fringe projection and statistical pattern projection for active triangulation systems. In Proceedings of SPIE 8788, Optical Measurement Systems for Industrial Inspection VIII. p. 878813 (SPIE, Munich, Germany, 2013).
[4] Pagès, J., Salvi, J., García, R. & Matabosch, C. Overview of coded light projection techniques for automatic 3D profiling. In Proceedings of 2003 IEEE International Conference on Robotics and Automation pp. 133–138 (IEEE, Taipei, Taiwan, China, 2003).
[5] Salvi, J., Pagès, J. & Batlle, J. Pattern codification strategies in structured light systems. Pattern Recognit. 37, 827–849 (2004). doi: 10.1016/j.patcog.2003.10.002
[6] Salvi, J., Fernandez, S., Pribanic, T. & Llado, X. A state of the art in structured light patterns for surface profilometry. Pattern Recognit. 43, 2666–2680 (2010). doi: 10.1016/j.patcog.2010.03.004
[7] Geng, J. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photon 3, 128–160 (2011). doi: 10.1364/AOP.3.000128
[8] Takeda, M. & Mutoh, K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 22, 3977–3982 (1983). doi: 10.1364/AO.22.003977
[9] Takeda, M., Gu, Q., Kinoshita, M., Takai, H. & Takahashi, Y. Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations. Appl. Opt. 36, 5347–5354 (1997). doi: 10.1364/AO.36.005347
[10] Willomitzer, F. & Häusler, G. Single-shot 3D motion picture camera with a dense point cloud. Opt. Express 25, 23451–23464 (2017). doi: 10.1364/OE.25.023451
[11] Kasuya, N., Sagawa, R., Kawasaki, H. & Furukawa, R. Robust and accurate one-shot 3D reconstruction by 2C1P system with wave grid pattern. In Proceedings of 2013 International Conference on 3D Vision pp. 247–254 (IEEE, Washington, 2013).
[12] Huang, P. S., Zhang, C. P. & Chiang, F. P. High-speed 3-D shape measurement based on digital fringe projection. Opt. Eng. 42, 163–168 (2003). doi: 10.1117/1.1525272
[13] Watanabe, Y., et al. High-speed 8-bit image projector at 1, 000 fps with 3 ms delay. In Proceedings of 2015 International Display Workshops pp. 1064–1065 (IDW, Shiga, Japan, 2015).
[14] Texas Instruments. DLP7000 DLP® 0.7 XGA 2x LVDS type A DMD (2017). www.ti.com/lit/gpn/dlp7000.
[15] Zhang, S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Opt. Lasers Eng. 48, 149–158 (2010). doi: 10.1016/j.optlaseng.2009.03.008
[16] Gorthi, S. S. & Rastogi, P. Fringe projection techniques: whither we are? Opt. Lasers Eng. 48, 133–140 (2010). doi: 10.1016/j.optlaseng.2009.09.001
[17] Batlle, J., Mouaddib, E. & Salvi, J. Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pattern Recognit. 31, 963–982 (1998). doi: 10.1016/S0031-3203(97)00074-5
[18] Albrecht, P. & Michaelis, B. Stereo photogrammetry with improved spatial resolution. In Proceedings of the 14th International Conference on Pattern Recognition pp 845–849 (IEEE, Brisbane, Queensland, 1998).
[19] Wiegmann, A., Wagner, H. & Kowarschik, R. Human face measurement by projecting bandlimited random patterns. Opt. Express 14, 7692–7698 (2006). doi: 10.1364/OE.14.007692
[20] Hartley R., Zisserman A. Multiple View Geometry in Computer Vision. 2nd edn (Cambridge University Press, New York, 2004).
[21] Luhmann T., Robson S., Kyle S., Boehm J. Close-Range Photogrammetry and 3D Imaging. 2nd edn (De Gruyter, Berlin, 2014).
[22] Heist, S., Mann, A., Kühmstedt, P., Schreiber, P. & Notni, G. Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement. Opt. Eng. 53, 112208 (2014). doi: 10.1117/1.OE.53.11.112208
[23] Schaffer, M., Grosse, M. & Kowarschik, R. High-speed pattern projection for three-dimensional shape measurement using laser speckles. Appl. Opt. 49, 3622–3629 (2010). doi: 10.1364/AO.49.003622
[24] Schaffer, M., Grosse, M., Harendt, B. & Kowarschik, R. High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection. Opt. Lett. 36, 3097–3099 (2011). doi: 10.1364/OL.36.003097
[25] Heist, S. et al. High-speed three-dimensional shape measurement using GOBO projection. Opt. Lasers Eng. 87, 90–96 (2016). doi: 10.1016/j.optlaseng.2016.02.017
[26] Heist, S., Kühmstedt, P., Tünnermann, A. & Notni, G. Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement. Appl. Opt. 54, 10541–10551 (2015). doi: 10.1364/AO.54.010541
[27] Heist, S., Kühmstedt, P., Tünnermann, A. & Notni, G. Experimental comparison of aperiodic sinusoidal fringes and phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement. Opt. Eng. 55, 024105 (2016). doi: 10.1117/1.OE.55.2.024105
[28] EMVA 1288 Standard for Characterization of Image Sensors and Cameras, R3.1. European Machine Vision Association, 2016.
[29] Hyun, J. S., Chiu, G. T. C. & Zhang, S. High-speed and high-accuracy 3D surface measurement using a mechanical projector. Opt. Express 26, 1474–1487 (2018). doi: 10.1364/OE.26.001474
[30] Hyun, J. S. & Zhang, S. High-speed 3D surface measurement with mechanical projector. In Proceedings of SPIE 10220, Dimensional Optical Metrology and Inspection for Practical Applications VI p. 1022004 (SPIE, Anaheim, CA, 2017).
[31] Judge, T. R. & Bryanston-Cross, P. J. A review of phase unwrapping techniques in fringe analysis. Opt. Lasers Eng. 21, 199–239 (1994). doi: 10.1016/0143-8166(94)90073-6
[32] Ghiglia, D. C. & Pritt, M. D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).
[33] Zhang, Q. C., Su, X. Y., Xiang, L. Q. & Sun, X. Z. 3-D shape measurement based on complementary Gray-code light. Opt. Lasers Eng. 50, 574–579 (2012). doi: 10.1016/j.optlaseng.2011.06.024
[34] Sansoni, G., Carocci, M. & Rodella, R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors. Appl. Opt. 38, 6565–6573 (1999). doi: 10.1364/AO.38.006565
[35] Bräuer-Burchardt, C. et al. On the accuracy of point correspondence methods in three-dimensional measurement systems using fringe projection. Opt. Eng. 52, 063601 (2013). doi: 10.1117/1.OE.52.6.063601
[36] Song, L. M., Dong, X. X., Xi, J. T., Yu, Y. G. & Yang, C. K. A new phase unwrapping algorithm based on three wavelength phase shift profilometry method. Opt. Laser Technol. 45, 319–329 (2013). doi: 10.1016/j.optlastec.2012.06.029
[37] Song, L. M. et al. Phase unwrapping method based on multiple fringe patterns without use of equivalent wavelengths. Opt. Commun. 355, 213–224 (2015). doi: 10.1016/j.optcom.2015.06.061
[38] Towers, C. E., Towers, D. P. & Jones, J. D. C. Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry. Opt. Lasers Eng. 43, 788–800 (2005). doi: 10.1016/j.optlaseng.2004.08.005
[39] Saldner, H. O. & Huntley, J. M. Temporal phase unwrapping: application to surface profiling of discontinuous objects. Appl. Opt. 36, 2770–2775 (1997). doi: 10.1364/AO.36.002770
[40] Zhao, H., Chen, W. Y. & Tan, Y. S. Phase-unwrapping algorithm for the measurement of three-dimensional object shapes. Appl. Opt. 33, 4497–4500 (1994). doi: 10.1364/AO.33.004497
[41] Li, J. L., Hassebrook, L. G. & Guan, C. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity. J. Opt. Soc. Am. A 20, 106–115 (2003). doi: 10.1364/JOSAA.20.000106
[42] Wissmann, P., Schmitt, R. & Forster, F. Fast and accurate 3D scanning using coded phase shifting and high speed pattern projection. In Proceedings of 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission pp 108–115(IEEE, Hangzhou, 2011).
[43] Lohry, W., Chen, V. & Zhang, S. Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration. Opt. Express 22, 1287–1301 (2014). doi: 10.1364/OE.22.001287
[44] Lohry, W. & Zhang, S. High-speed absolute three-dimensional shape measurement using three binary dithered patterns. Opt. Express 22, 26752–26762 (2014). doi: 10.1364/OE.22.026752
[45] Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965). doi: 10.1093/comjnl/7.4.308
[46] Bräuer-Burchardt, C., et al. Accurate 3D face and body scanning using an irritation-free pattern projection system. In Proceedings of the 5th International Symposium on Sensor Science p. 765 (MDPI, Barcelona, 2017).
[47] Brahm, A., et al. Fast 3D NIR systems for facial measurement and lip-reading. In Proceedings of SPIE 10220, Dimensional Optical Metrology and Inspection for Practical Applications VI p. 102200P (SPIE, Anaheim, CA, 2017).
[48] Pharr, M. & Humphreys, G. Physically Based Rendering: from Theory to Implementation (Elsevier, Amsterdam, 2010).
[49] Hartley, R. I. Theory and practice of projective rectification. Int J. Comput. Vis. 35, 115–127 (1999). doi: 10.1023/A:1008115206617