[1] Clark, K. A., McElhinny, A. S., Beckerle, M. C. & Gregorio, C. C. Striated muscle cytoarchitecture: an intricate web of form and function. Annu. Rev. Cell. Dev. Biol. 18, 637–706 (2002). doi: 10.1146/annurev.cellbio.18.012502.105840
[2] Goldfarb, L. G. & Dalakas, M. C. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J. Clin. Invest. 119, 1806–1813 (2009). doi: 10.1172/JCI38027
[3] Both, M. et al. Second harmonic imaging of intrinsic signals in muscle fibers in situ. J. Biomed. Opt. 9, 882–892 (2004). doi: 10.1117/1.1783354
[4] Rode, C., Siebert, T., Tomalka, A. & Blickhan, R. Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function. Proc. Biol. Sci. 283, 20153030 (2016). doi: 10.1098/rspb.2015.3030
[5] Berchtold, M. W., Brinkmeier, H. & Müntener, M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 80, 1215–1265 (2000). doi: 10.1152/physrev.2000.80.3.1215
[6] Matsakas, A. & Patel, K. Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli. Histol. Histopathol. 24, 611–629 (2009).
[7] Abmayr, S. M. & Pavlath, G. K. Myoblast fusion: lessons from flies and mice. Development 139, 641–656 (2012). doi: 10.1242/dev.068353
[8] Loell, I. et al. Effects on muscle tissue remodeling and lipid metabolism in muscle tissue from adult patients with polymyositis or dermatomyositis treated with immunosuppressive agents. Arthritis Res. Ther. 18, 136 (2016). doi: 10.1186/s13075-016-1033-y
[9] Devine, R. D., Bicer, S., Reiser, P. J., Velten, M. & Wold, L. E. Metalloproteinase expression is altered in cardiac and skeletal muscle in cancer cachexia. Am. J. Physiol. -Heart Circ. Physiol. 309, H685–H691 (2015). doi: 10.1152/ajpheart.00106.2015
[10] Dadgar, S. et al. Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J. Cell. Biol. 207, 139–158 (2014). doi: 10.1083/jcb.201402079
[11] Brocca, L. et al. Structure and function of human muscle fibres and muscle proteome in physically active older men. J. Physiol. 595, 4823–4844 (2017). doi: 10.1113/JP274148
[12] Head, S. I. Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue. Exp. Physiol. 95, 641–656 (2010). doi: 10.1113/expphysiol.2009.052019
[13] Head, S. I., Stephenson, D. G. & Williams, D. A. Properties of enzymatically isolated skeletal fibres from mice with muscular dystrophy. J. Physiol. 422, 351–367 (1990). doi: 10.1113/jphysiol.1990.sp017988
[14] Friedrich, O. et al. Microarchitecture is severely compromised but motor protein function is preserved in dystrophic mdx skeletal muscle. Biophys. J. 98, 606–616 (2010). doi: 10.1016/j.bpj.2009.11.005
[15] Ho, K. W. et al. Skeletal muscle fiber splitting with weight‐lifting exercise in rats. Am. J. Anat. 157, 433–440 (1980). doi: 10.1002/aja.1001570410
[16] Head, S. I., Houweling, P. J., Chan, S., Chen, G. & Hardeman, E. C. Properties of regenerated mouse extensor digitorum longus muscle following notexin injury. Exp. Physiol. 99, 664–674 (2014). doi: 10.1113/expphysiol.2013.077289
[17] Lynch, G. S., Hinkle, R. T., Chamberlain, J. S., Brooks, S. V. & Faulkner, J. A. Force and power output of fast and slow skeletal muscles from mdx mice 6‐28 months old. J. Physiol. 535, 591–600 (2001). doi: 10.1111/j.1469-7793.2001.00591.x
[18] Lovering, R. M., Michaelson, L. & Ward, C. W. Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling. Am. J. Physio 297, C571–C580 (2009). doi: 10.1152/ajpcell.00087.2009
[19] Hernández-Ochoa, E. O., Pratt, S. J. P., Garcia-Pelagio, K. P., Schneider, M. F. & Lovering, R. M. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice. Physiol. Rep. 3, e12366 (2015). doi: 10.14814/phy2.12366
[20] Plotnikov, S. V. et al. Measurement of muscle disease by quantitative second-harmonic generation imaging. J. Biomed. Opt. 13, 044018 (2008). doi: 10.1117/1.2967536
[21] Rehberg, M., Krombach, F., Pohl, U. & Dietzel, S. Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy. PLoS ONE 6, e28237 (2011). doi: 10.1371/journal.pone.0028237
[22] Paesen, R. et al. Fully automated muscle quality assessment by Gabor filtering of second harmonic generation images. J. Biomed. Opt. 21, 026003 (2016). doi: 10.1117/1.JBO.21.2.026003
[23] Garbe, C. S., Buttgereit, A., Schürmann, S. & Friedrich, O. Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing. Ieee. Trans. Biomed. Eng. 59, 39–44 (2012). doi: 10.1109/TBME.2011.2167325
[24] Buttgereit, A., Weber, C., Garbe, C. S. & Friedrich, O. From chaos to split-ups - SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle. J. Pathol. 229, 477–485 (2013). doi: 10.1002/path.4136
[25] Buttgereit, A., Weber, C. & Friedrich, O. A novel quantitative morphometry approach to assess regeneration in dystrophic skeletal muscle. Neuromuscul. Disord. 24, 596–603 (2014). doi: 10.1016/j.nmd.2014.04.011
[26] Diermeier, S. et al. Preaged remodeling of myofibrillar cytoarchitecture in skeletal muscle expressing R349P mutant desmin. Neurobiol. Aging 58, 77–87 (2017). doi: 10.1016/j.neurobiolaging.2017.06.001
[27] Diermeier, S. et al. Early signs of architectural and biomechanical failure in isolated myofibers and immortalized myoblasts from desmin-mutant knock-in mice. Sci. Rep. 7, 1391 (2017). doi: 10.1038/s41598-017-01485-x
[28] Moss, R. L. Sarcomere length‐tension relations of frog skinned muscle fibres during calcium activation at short lengths. J. Physiol. 292, 177–192 (1979). doi: 10.1113/jphysiol.1979.sp012845
[29] de Souza Leite, F., Minozzo, F. C., Altman, D. & Rassier, D. E. Microfluidic perfusion shows intersarcomere dynamics within single skeletal muscle myofibrils. Proc.. Natl. Acad. Sci. U. S. A. 114, 8794 (2017). doi: 10.1073/pnas.1700615114
[30] Horowits, R. Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys. J. 61, 392–398 (1992). doi: 10.1016/S0006-3495(92)81845-3
[31] Anderson, J., Li, Z. & Goubel, F. Models of skeletal muscle to explain the increase in passive stiffness in desmin knockout muscle. J. Biomech. 35, 1315–1324 (2002). doi: 10.1016/S0021-9290(02)00170-7
[32] Haug, M. et al. The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and active/passive biomechanics in muscle and biomaterials. Biosens. Bioelectron. 102, 589–599 (2018). doi: 10.1016/j.bios.2017.12.003
[33] Plotnikov, S. V., Millard, A. C., Campagnola, P. J. & Mohler, W. A. Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys. J. 90, 693–703 (2006). doi: 10.1529/biophysj.105.071555
[34] Schürmann, S., von Wegner, F., Fink, R. H. A., Friedrich, O. & Vogel, M. Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils. Biophys. J. 99, 1842–1851 (2010). doi: 10.1016/j.bpj.2010.07.005
[35] Nucciotti, V. et al. Probing myosin structural conformation in vivo by second-harmonic generation microscopy. Proc. Natl Acad. Sci. USA 107, 7763–7768 (2010). doi: 10.1073/pnas.0914782107
[36] Ralston, E. et al. Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence. J. Struct. Biol. 162, 500–508 (2008). doi: 10.1016/j.jsb.2008.03.010
[37] Feeney, E. J. et al. The value of muscle biopsies in Pompe disease: identifying lipofuscin inclusions in juvenile- and adult-onset patients. Acta Neuropathol. Commun. 2, 2 (2014). doi: 10.1186/2051-5960-2-2
[38] Liu, W. H., Ralston, E. & Raben, N. Quantitative evaluation of skeletal muscle defects in second harmonic generation images. J. Biomed. Opt. 18, 026005 (2013). doi: 10.1117/1.JBO.18.2.026005
[39] Mohler, W., Millard, A. C. & Campagnola, P. J. Second harmonic generation imaging of endogenous structural proteins. Methods 29, 97–109 (2003). doi: 10.1016/S1046-2023(02)00292-X
[40] Légaré, F., Pfeffer, C. & Olsen, B. R. The role of backscattering in SHG tissue imaging. Biophys. J. 93, 1312–1320 (2007). doi: 10.1529/biophysj.106.100586
[41] Nadiarnykh, O., LaComb, R., Campagnola, P. J. & Mohler, W. A. Coherent and incoherent SHG in fibrillar cellulose matrices. Opt. Express 15, 3348–3360 (2007). doi: 10.1364/OE.15.003348
[42] Mazumder, N. et al. Stokes vector based polarization resolved second harmonic microscopy of starch granules. Biomed. Opt. Express 4, 538–547 (2013). doi: 10.1364/BOE.4.000538
[43] Golaraei, A. et al. Characterization of collagen in non-small cell lung carcinoma with second harmonic polarization microscopy. Biomed. Opt. Express 5, 3562–3567 (2014). doi: 10.1364/BOE.5.003562
[44] Hayes, A. & Williams, D. A. Contractile function and low-intensity exercise effects of old dystrophic (mdx) mice. Am. J. Physiol. 274, C1138–C1144 (1998). doi: 10.1152/ajpcell.1998.274.4.C1138
[45] Hakim, C. H. & Duan, D. S. Gender differences in contractile and passive properties of mdx extensor digitorum longus muscle. Muscle Nerve 45, 250–256 (2011). doi: 10.1002/mus.22275
[46] Sosa, H., Popp, D., Ouyang, G. & Huxley, H. E. Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths. Biophys. J. 67, 283–292 (1994). doi: 10.1016/S0006-3495(94)80479-5
[47] Moo, E. K., Leonard, T. R. & Herzog, W. In vivo sarcomere lengths become more non-uniform upon activation in intact whole muscle. Front. Physiol. 8, 1015 (2017). doi: 10.3389/fphys.2017.01015
[48] Wood, D. S., Sorenson, M. M., Eastwood, A. B., Charash, W. E. & Reuben, J. P. Duchenne dystrophy: abnormal generation of tension and Ca++ regulation in single skinned fibers. Neurology 28, 447 (1978). doi: 10.1212/WNL.28.5.447
[49] Williams, D. A., Head, S. I., Lynch, G. S. & Stephenson, D. G. Contractile properties of skinned muscle fibres from young and adult normal and dystrophic (mdx) mice. J. Physiol. 460, 51–67 (1993). doi: 10.1113/jphysiol.1993.sp019458
[50] Schertzer, J. D., van der Poel, C., Shavlakadze, T., Grounds, M. D. & Lynch, G. S. Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice. Am. J. Physiol. 294, C161–C168 (2008). doi: 10.1152/ajpcell.00399.2007
[51] Horowits, R., Dalakas, M. C. & Podolsky, R. J. Single skinned muscle fibers in duchenne muscular dystrophy generate normal force. Ann. Neurol. 27, 636–641 (1990). doi: 10.1002/ana.410270609
[52] Rehorn, M. R., Schroer, A. K. & Blemker, S. S. The passive properties of muscle fibers are velocity dependent. J. Biomech. 47, 687–693 (2014). doi: 10.1016/j.jbiomech.2013.11.044
[53] Wolff, A. V. et al. Passive mechanical properties of maturing extensor digitorum longus are not affected by lack of dystrophin. Muscle Nerve 34, 304–312 (2006). doi: 10.1002/mus.20588
[54] Bobet, J., Mooney, R. F. & Gordon, T. Force and stiffness of old dystrophic (mdx) mouse skeletal muscles. Muscle Nerve 21, 536–539 (1998). doi: 10.1002/(SICI)1097-4598(199804)21:4<536::AID-MUS15>3.0.CO;2-V
[55] Hakim, C. H., Grange, R. W. & Duan, D. S. The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice. J. Appl. Physiol. 110, 1656–1663 (2011). doi: 10.1152/japplphysiol.01425.2010
[56] Smith, L. R. & Barton, E. R. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. Am. J. Physiol. 306, C889–C898 (2014). doi: 10.1152/ajpcell.00383.2013
[57] Vogel, A., Noack, J., Hüttman, G. & Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005). doi: 10.1007/s00340-005-2036-6
[58] Meldrum, R. A., Botchway, S. W., Wharton, C. W. & Hirst, G. J. Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption. EMBO Rep. 4, 1144–1149 (2003). doi: 10.1038/sj.embor.7400028
[59] Kong, X. D. et al. Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Res. 37, e68 (2009). doi: 10.1093/nar/gkp221
[60] Von Wegner, F., Both, M., Fink, R. H. A. & Friedrich, O. Fast XYT imaging of elementary calcium release events in muscle with multifocal multiphoton microscopy and wavelet denoising and detection. IEEE Trans. Med. Imaging 26, 925–934 (2007). doi: 10.1109/TMI.2007.895471