[1] Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889-898 (2014). doi: 10.1038/nphoton.2014.247
[2] Won, R. The rise of plasmonic metasurfaces. Nat. Photonics 11, 462-464 (2017). doi: 10.1038/nphoton.2017.136
[3] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[4] Ni, X. J. et al. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012). doi: 10.1126/science.1214686
[5] Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750-5755 (2012). doi: 10.1021/nl303031j
[6] Sun, S. L. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223-6229 (2012). doi: 10.1021/nl3032668
[7] Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012). doi: 10.1038/ncomms2207
[8] Ni, X. J. et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Sci. Appl. 2, e72 (2013). doi: 10.1038/lsa.2013.28
[9] Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932-4936 (2012). doi: 10.1021/nl302516v
[10] Wen, D. D. et al. Metasurface device with helicity-dependent functionality. Adv. Opt. Mater. 4, 321-327 (2016). doi: 10.1002/adom.201500498
[11] Yu, N. F. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328-6333 (2012). doi: 10.1021/nl303445u
[12] Zhao, Y. & Alù, A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett. 13, 1086-1091 (2013). doi: 10.1021/nl304392b
[13] Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light: Sci. Appl. 3, e167 (2014). MathSciNet doi: 10.1038/lsa.2014.48
[14] Bouchard, F. et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett. 105, 101905 (2014). doi: 10.1063/1.4895620
[15] Zeng, J. W. et al. Generating and separating twisted light by gradient-rotation split-ring antenna metasurfaces. Nano Lett. 16, 3101-3108 (2016). doi: 10.1021/acs.nanolett.6b00360
[16] Mehmood, M. Q. et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater. 28, 2533-2539 (2016). doi: 10.1002/adma.201504532
[17] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[18] Ni, X. J. et al. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi: 10.1038/ncomms3807
[19] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308-312 (2015). doi: 10.1038/nnano.2015.2
[20] Huang, L. L. et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv. Mater. 27, 6444-6449 (2015). doi: 10.1002/adma.201502541
[21] Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029-22106 (2011). doi: 10.1364/OE.19.022029
[22] Maier, S. A. Plasmonics: Fundamentals and Applications (Springer Verlag, Berlin, 2007).
[23] Stockman, M. I. et al. Roadmap on plasmonics. J. Opt. 20, 043001 (2018). doi: 10.1088/2040-8986/aaa114
[24] Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 3, 388-394 (2009). doi: 10.1038/nphoton.2009.111
[25] Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329-340 (2013). doi: 10.1038/nphys2615
[26] Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 6, 737-748 (2012). doi: 10.1038/nphoton.2012.244
[27] Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205-213 (2010). doi: 10.1038/nmat2629
[28] Xie, Z. H. et al. Plasmonic nanolithography: a review. Plasmonics 6, 565 (2011). doi: 10.1007/s11468-011-9237-0
[29] Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494-521 (2008). doi: 10.1021/cr068126n
[30] Xin, H. B., Namgung, B. & Lee, L. P. Nanoplasmonic optical antennas for life sciences and medicine. Nat. Rev. Mater. 3, 228-243 (2018). doi: 10.1038/s41578-018-0033-8
[31] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139-150 (2014). doi: 10.1038/nmat3839
[32] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220-226 (2018). doi: 10.1038/s41565-017-0034-6
[33] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227-232 (2018). doi: 10.1038/s41565-017-0052-4
[34] Devlin, R. C. et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473-10478 (2016). doi: 10.1073/pnas.1611740113
[35] Arbabi, A. & Faraon, A. Fundamental limits of ultrathin metasurfaces. Sci. Rep. 7, 43722 (2017). doi: 10.1038/srep43722
[36] Monticone, F., Estakhri, N. M. & Alù, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 110, 203903 (2013). doi: 10.1103/PhysRevLett.110.203903
[37] Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by mie resonances. ACS Photonics 4, 2638-2649 (2017). doi: 10.1021/acsphotonics.7b01038
[38] Ding, F., Pros, A. & Bozhevolnyi, S. I. Gradient metasurfaces: a review of fundamentals and applications. Rep. Prog. Phys. 81, 026401 (2018). doi: 10.1088/1361-6633/aa8732
[39] Wan, W. W., Gao, J. & Yang, X. D. Metasurface holograms for holographic imaging. Adv. Opt. Mater. 5, 1700541 (2017). doi: 10.1002/adom.201700541
[40] Zhang, L. et al. Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 4, 818-833 (2016). doi: 10.1002/adom.201500690
[41] He, Q. et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater. 6, 1800415 (2018). doi: 10.1002/adom.201800415
[42] Epstein, A. & Eleftheriades, G. V. Huygens' metasurfaces via the equivalence principle: design and applications. J. Opt. Soc. Am. B 33, A31-A50 (2016). doi: 10.1364/JOSAB.33.000A31
[43] Decker, M. et al. High-efficiency dielectric Huygens' surfaces. Adv. Opt. Mater. 3, 813-820 (2015). doi: 10.1002/adom.201400584
[44] Kerker, M., Wang, D. S. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765-767 (1983). doi: 10.1364/JOSA.73.000765
[45] Pfeiffer, C. & Grbic, A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013). doi: 10.1103/PhysRevLett.110.197401
[46] Pfeiffer, C. & Grbic, A. Millimeter-wave transmitarrays for wavefront and polarization control. IEEE Trans. Microw. Theory Tech. 61, 4407-4417 (2013). doi: 10.1109/TMTT.2013.2287173
[47] Pfeiffer, C. et al. Efficient light bending with isotropic metamaterial Huygens' surfaces. Nano Lett. 14, 2491-2497 (2014). doi: 10.1021/nl5001746
[48] Wong, J. P. S. et al. Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces. Photonics Nanostruct.-Fundam. Appl. 12, 360-375 (2014). doi: 10.1016/j.photonics.2014.07.001
[49] Cheng, H. et al. Emergent functionality and controllability in few-layer metasurfaces. Adv. Mater. 27, 5410-5421 (2015). doi: 10.1002/adma.201501506
[50] Chen, S. Q. et al. Empowered layer effects and prominent properties in few-layer metasurfaces. Adv. Opt. Mater. 7, 1801477 (2019). doi: 10.1002/adom.201801477
[51] Grady, N. K. et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304-1307 (2013). doi: 10.1126/science.1235399
[52] Zhu, W. M. et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv. Mater. 27, 4739-4743 (2015). doi: 10.1002/adma.201501943
[53] El Kabbash, M. et al. Plasmon-exciton resonant energy transfer: across scales hybrid systems. J. Nanomater. 2016, 4819040 (2016).
[54] Liu, W. & Kivshar, Y. S. Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Opt. Express 26, 13085-13105 (2018). doi: 10.1364/OE.26.013085
[55] Wen, D. D. et al. Metasurface for characterization of the polarization state of light. Opt. Express 23, 10272-10281 (2015). doi: 10.1364/OE.23.010272
[56] Alu, A. & Engheta, N. How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem? J. Nanophotonics 4, 041590 (2010). doi: 10.1117/1.3449103
[57] Pors, A. et al. Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions. Opt. Express 23, 28808-28828 (2015). doi: 10.1364/OE.23.028808
[58] Alaee, R., Rockstuhl, C. & Fernandez-Corbaton, I. An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt. Commun. 407, 17-21 (2018). doi: 10.1016/j.optcom.2017.08.064
[59] Oulton, R. F. et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496-500 (2008). doi: 10.1038/nphoton.2008.131
[60] Qin, F. et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci. Adv. 2, e1501168 (2016). doi: 10.1126/sciadv.1501168
[61] Cui, Z. Nanofabrication: Principles, Capabilities and Limits 2nd edn (Springer, Cham, 2017).
[62] Burch, J. & Di Falco, A. Surface topology specific metasurface holograms. ACS Photonics 5, 1762-1766 (2018). doi: 10.1021/acsphotonics.7b01449
[63] Aieta, F. et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 12, 1702-1706 (2012). doi: 10.1021/nl300204s
[64] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-246 (1972).
[65] Lapedes, D. N. Dictionary of Scientific and Technical Terms. 2nd edn (McGraw Hill, New York, 1978).
[66] Kruk, S. et al. Invited article: broadband highly efficient dielectric metadevices for polarization control. APL Photonics 1, 030801 (2016). doi: 10.1063/1.4949007
[67] Zhu, A. Y. et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light: Sci. Appl. 7, 17158 (2018). doi: 10.1038/lsa.2017.158