[1] Xia, T., Zhang, C., Oyler, N. A. & Chen, X. B. Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013). doi: 10.1002/adma.201303088
[2] Xia, T. et al. Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles. ACS Appl. Mater. Interfaces 7, 10407–10413 (2015). doi: 10.1021/acsami.5b01598
[3] Zhao, D. L., Li, X. & Shen, Z. M. Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes. Compos Sci. Technol. 68, 2902–2908 (2008). doi: 10.1016/j.compscitech.2007.10.006
[4] Fan, Y. Z., Yang, H. B., Li, M. H. & Zou, G. T. Evaluation of the microwave absorption property of flake graphite. Mater. Chem. Phys. 115, 696–698 (2009). doi: 10.1016/j.matchemphys.2009.02.010
[5] Zhang, Y. et al. Broadband and tunable high‐performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). doi: 10.1002/adma.201405788
[6] Fan, Z. J., Luo, G. H., Zhang, Z. F., Zhou, L. & Wei, F. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater. Sci. Eng. B 132, 85–89 (2006). doi: 10.1016/j.mseb.2006.02.045
[7] Li, G., Xie, T. S., Yang, S. L., Jin, J. H. & Jiang, J. M. Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116, 9196–9201 (2012). doi: 10.1021/jp300050u
[8] Olmedo, L., Hourquebie, P. & Jousse, F. Microwave absorbing materials based on conducting polymers. Adv. Mater. 5, 373–377 (1993). doi: 10.1002/adma.19930050509
[9] Wang, Z. Z., Bi, H., Liu, J., Sun, T. & Wu, X. L. Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite. J. Magn. Magn. Mater. 320, 2132–2139 (2008). doi: 10.1016/j.jmmm.2008.03.043
[10] Jia, K., Zhao, R., Zhong, J. C. & Liu, X. B. Preparation and microwave absorption properties of loose nanoscale Fe3O4 spheres. J. Magn. Magn. Mater. 322, 2167–2171 (2010). doi: 10.1016/j.jmmm.2010.02.003
[11] Zhou, M. et al. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 115, 1398–1402 (2011). doi: 10.1021/jp106652x
[12] Li, H. F. et al. Directed growth and microwave absorption property of crossed ZnO netlike micro-/nanostructures. J. Phys. Chem. C 114, 10088–10091 (2010). doi: 10.1021/jp100341h
[13] Yang, C. C., Gung, Y. J., Hung, W. C., Ting, T. H. & Wu, K. H. Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites. Compos Sci. Technol. 70, 466–471 (2010). doi: 10.1016/j.compscitech.2009.11.021
[14] Kuruva, P., Matli, P. R., Mohammad, B., Reddigari, S. & Katlakunta, S. Effect of Ni–Zr codoping on dielectric and magnetic properties of SrFe12O19 via sol–gel route. J. Magn. Magn. Mater. 382, 172–178 (2015). doi: 10.1016/j.jmmm.2015.01.050
[15] Kuang, J. L., Jiang, P., Ran, F. Y. & Cao, W. B. Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers. J. Alloy. Compd. 687, 227–231 (2016). doi: 10.1016/j.jallcom.2016.06.168
[16] Li, Q. et al. Dielectric and microwave absorption properties of polymer derived SiCN ceramics annealed in N2 atmosphere. J. Eur. Ceram. Soc. 34, 589–598 (2014). doi: 10.1016/j.jeurceramsoc.2013.08.042
[17] Xia, T., Zhang, C., Oyler, N. A. & Chen, X. B. Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 29, 2198–2210 (2014). doi: 10.1557/jmr.2014.227
[18] Tian, L. H. et al. Broad range energy absorption enabled by hydrogenated TiO2 nanosheets: from optical to infrared and microwave. J. Mater. Chem. C 5, 4645–4653 (2017). doi: 10.1039/C7TC01189J
[19] Tian, L. H. et al. Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J. Mater. Chem. A 3, 12550–12556 (2015). doi: 10.1039/C5TA02109J
[20] Dong, J. Y. et al. Partially crystallized TiO2 for microwave absorption. J. Mater. Chem. A 3, 5285–5288 (2015). doi: 10.1039/C4TA05908E
[21] Guo, Y. F. et al. A rapid microwave-assisted thermolysis route to highly crystalline carbon nitrides for efficient hydrogen generation. Angew. Chem. Int Ed. 55, 14693–14697 (2016). doi: 10.1002/anie.201608453
[22] Xu, W. T. et al. A general and rapid approach to crystalline metal sulfide nanoparticle synthesis for photocatalytic H2 generation. J. Mater. Chem. A 5, 21669–21673 (2017). doi: 10.1039/C7TA07544H
[23] Chen, L. Y., Duan, Y. P., Liu, L. D., Guo, J. B. & Liu, S. H. Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings. Mater. Des. 32, 570–574 (2011). doi: 10.1016/j.matdes.2010.08.021
[24] Qing, Y. C., Zhou, W. C., Jia, S., Luo, F. & Zhu, D. M. Microwave electromagnetic property of SiO2-coated carbonyl iron particles with higher oxidation resistance. Phys. B 406, 777–780 (2011). doi: 10.1016/j.physb.2010.11.079
[25] Yan, L. et al. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Nanotechnology 21, 095708 (2010). doi: 10.1088/0957-4484/21/9/095708
[26] Ingo, G. M., Dirè, S. & Babonneau, F. XPS studies of SiO2-TiO2 powders prepared by sol-gel process. Appl. Surf. Sci. 70-71, 230–234 (1993). http://www.sciencedirect.com/science/article/pii/016943329390433C
[27] Koshizaki, N., Umehara, H. & Oyama, T. XPS characterization and optical properties of Si/SiO2, Si/Al2O3 and Si/MgO co-sputtered films. Thin Solid Films 325, 130–136 (1998). doi: 10.1016/S0040-6090(98)00512-4
[28] Miller, M. L. & Linton, R. W. X-ray photoelectron spectroscopy of thermally treated silica (SiO2) surfaces. Anal. Chem. 57, 2314–2319 (1985). doi: 10.1021/ac00289a033
[29] Seyama, H. & Soma, M. Bonding-state characterization of the constitutent elements of silicate minerals by X-ray photoelectron spectroscopy. J. Chem. Soc. Faraday Trans. 1 81, 485–495 (1985). doi: 10.1039/f19858100485
[30] Clark, D. T. & Thomas, H. R. Applications of ESCA to polymer chemistry. XVII. Systematic investigation of the core levels of simple homopolymers. J. Polym. Sci. Polym. Chem. Ed. 16, 791–820 (1978). doi: 10.1002/pol.1978.170160407
[31] Briggs, D. & Beamson, G. Primary and secondary oxygen-induced C1s binding energy shifts in x-ray photoelectron spectroscopy of polymers. Anal. Chem. 64, 1729–1736 (1992). doi: 10.1021/ac00039a018
[32] Srinivasan, R. & Walton, R. A. X-ray photoelectron spectra of inorganic molecules.: XX. Observations concerning the sulfur 2p binding energies in metal complexes of thiourea. Inorg. Chim. Acta 25, l85–l86 (1977). doi: 10.1016/S0020-1693(00)95656-1
[33] Biner, H. & Sellman, D. Z. X-ray photoelectron studies of pentacarbonyl chromium and tungsten complexes with nitrogen ligands. Naturforsch. B 33, 173–179 (1978). doi: 10.1515/znb-1978-0211
[34] Andersson, M., Blomquist, J., Folkesson, B., Larsson, R. & Sundberg, P. Esca, mössbauer and infrared spectroscopic investigations of a series of tin complexes. J. Electron Spectrosc. Relat. Phenom. 40, 385–396 (1986). doi: 10.1016/0368-2048(86)80047-0
[35] Micheli, D. Radar Absorbing Materials and Microwave Shielding Structures Design: By Using Multilayer Composite Materials, Nanomaterials and Evolutionary Computation (LAP LAMBERT Academic Publishing, Berlin, 2011).
[36] Cao, M. S. et al. Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett. 91, 203110 (2007). doi: 10.1063/1.2803764
[37] Wang, X. X., Ma, T., Shu, J. C. & Cao, M. S. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018). doi: 10.1016/j.cej.2017.09.101
[38] Liu, J. et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8, 22615–22622 (2016). doi: 10.1021/acsami.6b05480
[39] Liu, J. et al. Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 3, 4670–4677 (2015). doi: 10.1039/C5TC00426H
[40] Cao, M. S. et al. Thermally driven transport and relaxation switching self‐powered electromagnetic energy conversion. Small 14, 1800987 (2018). doi: 10.1002/smll.201800987
[41] Wen, B. et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). doi: 10.1016/j.carbon.2013.07.110
[42] Wen, B. et al. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). doi: 10.1002/adma.201400108
[43] Cao, M. S., Song, W. L., Hou, Z. L., Wen, B. & Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010). doi: 10.1016/j.carbon.2009.10.028