[1] Campochiaro, P. A. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog. Retin. Eye Res. 49, 67-81 (2015). doi: 10.1016/j.preteyeres.2015.06.002
[2] Al-Shabrawey, M. et al. Targeting neovascularization in ischemic retinopathy: recent advances. Expert. Rev. Ophthalmol. 8, 267-286 (2013). doi: 10.1586/eop.13.17
[3] Campochiaro, P. A. Ocular neovascularization. J. Mol. Med. 91, 311-321 (2013). doi: 10.1007/s00109-013-0993-5
[4] Brand, C. S. Management of retinal vascular diseases: a patient-centric approach. Eye 26, S1-S16 (2012).
[5] Harvey, P. T. Common eye diseases of elderly people: identifying and treating causes of vision loss. Gerontology 49, 1-11 (2003). doi: 10.1159/000066507
[6] Lovett, M., Lee, K., Edwards, A. & Kaplan, D. L. Vascularization strategies for tissue engineering. Tissue Eng. Part B Rev. 15, 353-370 (2009). doi: 10.1089/ten.teb.2009.0085
[7] Ferris, F. L. Ⅲ & Patz, A. Macular edema: a major complication of diabetic retinopathy. Trans. New Orleans Acad. Ophthalmol. 31, 307-316 (1983).
[8] Kim, J., Brown, W., Maher, J. R., Levinson, H. & Wax, A. Functional optical coherence tomography: principles and progress. Phys. Med. Biol. 60, R211-R237 (2015). doi: 10.1088/0031-9155/60/10/R211
[9] Ng, E. Y., Lanigan, B. & O'Keefe, M. Fundus fluorescein angiography in the screening for and management of retinopathy of prematurity. J. Pediatr. Ophthalmol. Strabismus 43, 85-90 (2006). doi: 10.3928/0191-3913-20060301-07
[10] Yang, C. Molecular contrast optical coherence tomography: a review. Photochem. Photobiol. 81, 215-237 (2005). doi: 10.1562/2004-08-06-IR-266.1
[11] Xu, M. & Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006). doi: 10.1063/1.2195024
[12] Laufer, J. G. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17, 056016 (2012). doi: 10.1117/1.JBO.17.5.056016
[13] Yang, S. H. et al. Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging. Appl. Phys. Lett. 90, 243902 (2007). doi: 10.1063/1.2749185
[14] Wang, X. D., Pang, Y. J., Ku, G., Stoica, G. & Wang, L. V. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact. Opt. Lett. 28, 1739-1741 (2003). doi: 10.1364/OL.28.001739
[15] Rajian, J. R., Girish, G. & Wang, X. D. Photoacoustic tomography to identify inflammatory arthritis. J. Biomed. Opt. 17, 096013 (2012).
[16] Mitcham, T., Dextraze, K., Taghavi, H., Melancon, M. & Bouchard, R. Photoacoustic imaging driven by an interstitial irradiation source. Photoacoustics 3, 45-54 (2015). doi: 10.1016/j.pacs.2015.02.002
[17] Jo, J. et al. A functional study of human inflammatory arthritis using photoacoustic imaging. Sci. Rep. 7, 15026 (2017). doi: 10.1038/s41598-017-15147-5
[18] Xia, J., Yao, J. J. & Wang, L. V. Photoacoustic tomography: principles and advances. Electromagn. Waves 147, 1-22 (2014). doi: 10.2528/PIER14032303
[19] de La Zerda, A. et al. Photoacoustic ocular imaging. Opt. Lett. 35, 270-272 (2010). doi: 10.1364/OL.35.000270
[20] Hu, S., Rao, B., Maslov, K. & Wang, L. V. Label-free photoacoustic ophthalmic angiography. Opt. Lett. 35, 1-3 (2010). doi: 10.1364/OL.35.000001
[21] Jiao, S. L. et al. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express 18, 3967-3972 (2010). doi: 10.1364/OE.18.003967
[22] Liu, W. Z. & Zhang, H. F. Photoacoustic imaging of the eye: a mini review. Photoacoustics 4, 112-123 (2016). doi: 10.1016/j.pacs.2016.05.001
[23] Tian, C., Zhang, W., Mordovanakis, A., Wang, X. D. & Paulus, Y. M. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography. Opt. Express 25, 15947-15955 (2017). doi: 10.1364/OE.25.015947
[24] Tian, C., Zhang, W., Nguyen, V. P., Wang, X. D., Paulus, Y. M. Novel photoacoustic microscopy and optical coherence tomography dual-modality chorioretinal imaging in living rabbit eyes. J. Vis. Exp. 132, (2018) https://doi.org/10.3791/57135.
[25] Liu, W. Z. et al. In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy. Photoacoustics 2, 81-86 (2014). doi: 10.1016/j.pacs.2014.04.003
[26] Lin, R. Q. et al. Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo. Quant. Imaging Med. Surg. 5, 23-29 (2015).
[27] Rabbani, H., Allingham, M. J., Mettu, P. S., Cousins, S. W. & Farsiu, S. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema. Invest. Ophthalmol. Vis. Sci. 56, 1482-1492 (2015). doi: 10.1167/iovs.14-15457
[28] Wang, T. X. et al. Multiparametric photoacoustic microscopy of the mouse brain with 300-kHz A-line rate. Neurophotonics 3, 045006 (2016). doi: 10.1117/1.NPh.3.4.045006
[29] Ma, T. et al. Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy. J. Biomed. Opt. 19, 016015 (2014). doi: 10.1117/1.JBO.19.1.016015
[30] Wong, C. G., Rich, K. A., Liaw, L. H. L., Hsu, H. T. & Berns, M. W. Intravitreal VEGF and bFGF produce florid retinal neovascularization and hemorrhage in the rabbit. Curr. Eye Res. 22, 140-147 (2001). doi: 10.1076/ceyr.22.2.140.5528
[31] Grossniklaus, H. E., Kang, S. J. & Berglin, L. Animal models of choroidal and retinal neovascularization. Prog. Retin. Eye Res. 29, 500-519 (2010). doi: 10.1016/j.preteyeres.2010.05.003