[1] Xie, Z. W. et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl. 7, 18001 (2018). doi: 10.1038/lsa.2018.1
[2] Mekis, A. et al. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787-3790 (1996). doi: 10.1103/PhysRevLett.77.3787
[3] Wu, Q., Turpin, J. P. & Werner, D. H. Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci. Appl. 1, e38 (2012). doi: 10.1038/lsa.2012.38
[4] Cannon, B. L. et al. Excitonic AND logic gates on DNA brick nanobreadboards. ACS Photonics 2, 398-404 (2015). doi: 10.1021/ph500444d
[5] Wang, M. J. et al. Magnetic spin-orbit interaction of light. Light Sci. Appl. 7, 24 (2018). doi: 10.1038/s41377-018-0018-9
[6] Chen, Y., Lin, H. T., Hu, J. J. & Li, M. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano 8, 6955-6961 (2014). doi: 10.1021/nn501765k
[7] Cadarso, V. J., Llobera, A., Puyol, M. & Schift, H. Integrated photonic nanofences: combining subwavelength waveguides with an enhanced evanescent field for sensing applications. ACS Nano 10, 778-785 (2016). doi: 10.1021/acsnano.5b05864
[8] Zhang, D. G. et al. Silver nanowires for reconfigurable Bloch surface waves. ACS Nano 11, 10446-10451 (2017). doi: 10.1021/acsnano.7b05638
[9] Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
[10] Zhang, D. G. et al. Extending the propagation distance of a silver nanowire plasmonic waveguide with a dielectric multilayer substrate. Nano. Lett. 18, 1152-1158 (2018). doi: 10.1021/acs.nanolett.7b04693
[11] Yeh, P., Yariv, A. & Hong, C. S. Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 67, 423-438 (1977). doi: 10.1364/JOSA.67.000423
[12] Dubey, R. et al. Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform. J. Eur. Opt. Soc. Rapid Publ. 13, 5 (2017). doi: 10.1186/s41476-016-0029-1
[13] Michelotti, F. et al. Design rules for combined label-free and fluorescence Bloch surface wave biosensors. Opt. Lett. 42, 2798-2801 (2017). doi: 10.1364/OL.42.002798
[14] Rizzo, R. et al. Bloch surface wave enhanced biosensor for the direct detection of Angiopoietin-2 tumor biomarker in human plasma. Biomed. Opt. Express 9, 529-542 (2018). doi: 10.1364/BOE.9.000529
[15] Koju, V. & Robertson, W. M. Leaky Bloch-like surface waves in the radiation-continuum for sensitivity enhanced biosensors via azimuthal interrogation. Sci. Rep. 7, 3233 (2017). doi: 10.1038/s41598-017-03515-0
[16] Lerario, G. et al. High-speed flow of interacting organic polaritons. Light Sci. Appl. 6, e16212 (2017). doi: 10.1038/lsa.2016.212
[17] Yu, L. B. et al. Manipulating Bloch surface waves in 2D: a platform concept-based flat lens. Light Sci. Appl. 3, e124 (2014). doi: 10.1038/lsa.2014.5
[18] Kim, M. S. et al. Subwavelength focusing of Bloch surface waves. ACS Photonics 4, 1477-1483 (2017). doi: 10.1021/acsphotonics.7b00245
[19] Gao, Y. K., Gan, O. Q., Xin, Z. M., Cheng, X. H. & Bartoli, F. J. Plasmonic Mach-zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano 5, 9836-9844 (2011). doi: 10.1021/nn2034204
[20] Zaki, A. O., Kirah, K. & Swillam, M. A. Integrated optical sensor using hybrid plasmonics for lab on chip applications. J. Opt. 18, 085803 (2016). doi: 10.1088/2040-8978/18/8/085803
[21] Kim, M. S., Vosoughi Lahijani, B. & Herzig, H. P. Stepwise Luneburg lens for Bloch surface waves. Appl. Sci. 8, 245 (2018). doi: 10.3390/app8020245
[22] Sfez, T. Investigation of surface electromagnetic waves with multi-heterodyne scanning near-field optical microscopy. PhD thesis, École polytechnique fédérale de Lausanne, Lausanne.
[23] Wang, R. X. et al. Two-dimensional photonic devices based on Bloch surface waves with one-dimensional grooves. Phys. Rev. Appl. 10, 024032 (2018). doi: 10.1103/PhysRevApplied.10.024032
[24] Chen, J. X., Zhang, D. G., Wang, P., Ming, H. & Lakowicz, J. R. Strong polarization transformation of Bloch surface waves. Phys. Rev. Appl. 9, 024008 (2018). doi: 10.1103/PhysRevApplied.9.024008
[25] Miller, O. D. Photonic design: from fundamental solar cell physics to computational inverse design. PhD thesis, University of California, Berkeley.
[26] Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics 9, 374-377 (2015). doi: 10.1038/nphoton.2015.69
[27] Yu, Z. J. & Cui, H. R., & Sun, X. K. Genetically optimized on-chip wideband ultracompact reflectors and Fabry-Perot cavities. Photonics Res. 5, B15-B19 (2017). doi: 10.1364/PRJ.5.000B15
[28] Yu, Z. J., Cui, H. R. & Sun, X. K. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett. 42, 3093-3096 (2017). doi: 10.1364/OL.42.003093
[29] Yang, H., Cornaglia, M. & Gijs, M. A. M. Photonic nanojet array for fast detection of single nanoparticles in a flow. Nano. Lett. 15, 1730-1735 (2015). doi: 10.1021/nl5044067
[30] Vest, B. et al. Anti-coalescence of bosons on a lossy beam splitter. Science 356, 1373-1376 (2017). doi: 10.1126/science.aam9353
[31] Lee, C. et al. Quantum plasmonic sensing: beyond the shot-noise and diffraction limit. ACS Photonics 3, 992-999 (2016). doi: 10.1021/acsphotonics.6b00082
[32] Oskooi, A. F. et al. MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687-702 (2010). doi: 10.1016/j.cpc.2009.11.008
[33] Python Software Foundation. Python language reference, version 3.4. Available at http://www.python.org.