[1] NCAT. Growth In The Internet of Things. at www.ncta.com/chart/growth-in-the-internet-of-things#.WsSRvubTQ00.link.
[2] Koonen, T. Indoor optical wireless systems: technology, trends, and applications. J. Light. Technol. 36, 1459-1467 (2018). doi: 10.1109/JLT.2017.2787614
[3] Wang, C. X. et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52, 122-130 (2014).
[4] CISCO. 802.11ac: The Fifth Generation of Wi-Fi. (CISCO, 2018).
[5] IEEE. Draft Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (IEEE, 2016).
[6] Chan, V. W. S. Free-space optical communications. J. Light. Technol. 24, 4750-4762 (2006). doi: 10.1109/JLT.2006.885252
[7] Gomez, A. et al. Design and demonstration of a 400 Gb/s indoor optical wireless communications link. J. Light. Technol. 34, 5332-5339 (2016). doi: 10.1109/JLT.2016.2616844
[8] Haas, H. L. et al. What is LiFi? J. Light. Technol. 34, 1533-1544 (2016). doi: 10.1109/JLT.2015.2510021
[9] Schulz, D. et al. Robust optical wireless link for the backhaul and fronthaul of small radio cells. J. Light. Technol. 34, 1523-1532 (2016). doi: 10.1109/JLT.2016.2523801
[10] O'Brien, D., Parry, G. & Stavrinou, P. Optical hotspots speed up wireless communication. Nat. Photonics 1, 245-247 (2007). doi: 10.1038/nphoton.2007.52
[11] Chi, Y. C. et al. Phosphorous diffuser diverged blue laser diode for indoor lighting and communication. Sci. Rep. 5, 18690 (2015). doi: 10.1038/srep18690
[12] Chi, Y. C. et al. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM. Opt. Express 23, 13051-13059 (2015). doi: 10.1364/OE.23.013051
[13] Wu, T. C. et al. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci. Rep. 7, 11 (2017). doi: 10.1038/s41598-017-00052-8
[14] Chun, H. et al. LED based wavelength division multiplexed 10 Gb/s visible light communications. J. Light. Technol. 34, 3047-3052 (2016). doi: 10.1109/JLT.2016.2554145
[15] Kahn, J. M. & Barry, J. R. Wireless infrared communications. Proc. IEEE 85, 265-298 (1997). doi: 10.1109/5.554222
[16] Koonen, T. et al. High-capacity optical wireless communication using two-dimensional IR beam steering. J. Light. Technol. 36, 4486-4493 (2018). doi: 10.1109/JLT.2018.2834374
[17] Wang, K. et al. Experimental demonstration of a full-duplex indoor optical wireless communication system. IEEE Photonics Technol. Lett. 24, 188-190 (2012). doi: 10.1109/LPT.2011.2175912
[18] Elgala, H., Mesleh, R. & Haas, H. Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 49, 56-62 (2011).
[19] Mosk, A. P. et al. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283-292 (2012). doi: 10.1038/nphoton.2012.88
[20] Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309-2311 (2007). doi: 10.1364/OL.32.002309
[21] Horstmeyer, R., Ruan, H. W. & Yang, C. H. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9, 563-571 (2015). doi: 10.1038/nphoton.2015.140
[22] Tang, J. Y., Germain, R. N. & Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl Acad. Sci. USA 109, 8434-8439 (2012). doi: 10.1073/pnas.1119590109
[23] Dholakia, K. & Čižmár, T. Shaping the future of manipulation. Nat. Photonics 5, 335-342 (2011). doi: 10.1038/nphoton.2011.80
[24] Goorden, S. A. et al. Quantum-secure authentication of a physical unclonable key. Optica 1, 421-424 (2014). doi: 10.1364/OPTICA.1.000421
[25] Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189-12206 (2015). doi: 10.1364/OE.23.012189
[26] Yılmaz, H., Vos, W. L. & Mosk, A. P. Optimal control of light propagation through multiple-scattering media in the presence of noise. Biomed. Opt. Express 4, 1759-1768 (2013). doi: 10.1364/BOE.4.001759
[27] Shieh, W. & Djordjevic, I. OFDM for Optical Communications. (Academic Press, New York, 2009).
[28] Kalita, S. et al. Performance enhancement of a multichannel uncoordinated code hopping DSSS signaling scheme using multipath fading compensator. J. Circuits, Syst. Comput. 25, 1650145 (2016). doi: 10.1142/S0218126616501450
[29] Biglieri, E., Proakis, J. & Shamai, S. Fading channels: information-theoretic and communications aspects. IEEE Trans. Inf. Theory 44, 2619-2692 (1998). doi: 10.1109/18.720551
[30] Sahu, P. P. & Singh, M. Multi channel frequency hopping spread spectrum signaling using code M-ary frequency shift keying. Comput. Electr. Eng. 34, 338-345 (2008). doi: 10.1016/j.compeleceng.2007.09.001
[31] Yu, H. S., Lee, K. & Park, Y. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes. Opt. Express 25, 8036-8047 (2017). doi: 10.1364/OE.25.008036
[32] Blochet, B., Bourdieu, L. & Gigan, S. Focusing light through dynamical samples using fast continuous wavefront optimization. Opt. Lett. 42, 4994-4997 (2017). doi: 10.1364/OL.42.004994
[33] Johnson, P. M. et al. Time-resolved pulse propagation in a strongly scattering material. Phys. Rev. E 68, 016604 (2003). doi: 10.1103/PhysRevE.68.016604
[34] Smit, M., van der Tol, J. & Hill, M. Moore's law in photonics. Laser Photonics Rev. 6, 1-13 (2012). doi: 10.1002/lpor.201100001
[35] Shieh, W., Bao, H. & Tang, Y. Coherent optical OFDM: theory and design. Opt. Express 16, 841-859 (2008). doi: 10.1364/OE.16.000841
[36] Ip, E. et al. Coherent detection in optical fiber systems. Opt. Express 16, 753-791 (2008). doi: 10.1364/OE.16.000753