[1] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[2] Ni, X. J., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012). doi: 10.1126/science.1214686
[3] Yin, X. B., Ye, Z. L., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013). doi: 10.1126/science.1231758
[4] Lin, D. M., Fan, P. Y., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213
[5] Khorasaninejad, M. & Crozier, K. B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat. Commun. 5, 5386 (2014). doi: 10.1038/ncomms6386
[6] Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494
[7] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644
[8] Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photonics 11, 415–420 (2017). doi: 10.1038/nphoton.2017.96
[9] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4
[10] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[11] Ni, X. J., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi: 10.1038/ncomms3807
[12] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015). doi: 10.1038/nnano.2015.2
[13] Huang, K. et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 6, 7059 (2015). doi: 10.1038/ncomms8059
[14] Wan, W. W., Gao, J. & Yang, X. D. Full-color plasmonic metasurface holograms. ACS Nano 10, 10671–10680 (2016). doi: 10.1021/acsnano.6b05453
[15] Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano. Lett. 12, 5750–5755 (2012). doi: 10.1021/nl303031j
[16] Yang, Y. M. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano. Lett. 14, 1394–1399 (2014). doi: 10.1021/nl4044482
[17] Zeng, J. W., Gao, J., Luk, T. S., Litchinitser, N. M. & Yang, X. D. Structuring light by concentric-ring patterned magnetic metamaterial cavities. Nano. Lett. 15, 5363–5368 (2015). doi: 10.1021/acs.nanolett.5b01738
[18] Huang, K. et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. Light.: Sci. Appl. 7, 17156 (2018). doi: 10.1038/lsa.2017.156
[19] Chen Y., Yang X. D., Gao J. Spin‐selective second‐harmonic vortex beam generation with babinet‐inverted plasmonic metasurfaces. Adv Opt Mater 2018; https://doi.org/10.1002/adom.201800646.
[20] Huang, L. L. et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv. Mater. 27, 6444–6449 (2015). doi: 10.1002/adma.201502541
[21] Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano. Lett. 16, 5235–5240 (2016). doi: 10.1021/acs.nanolett.6b02326
[22] Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901
[23] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015). doi: 10.1038/ncomms9241
[24] Yue, F. Y. et al. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv. Mater. 29, 1603838 (2017). doi: 10.1002/adma.201603838
[25] Khorasaninejad, M., Ambrosio, A., Kanhaiya, P. & Capasso, F. Broadband and chiral binary dielectric meta-holograms. Sci. Adv. 2, e1501258 (2016). doi: 10.1126/sciadv.1501258
[26] Zhang, F. et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv. Funct. Mater. 27, 1704295 (2017). doi: 10.1002/adfm.201704295
[27] Li, Z. F. et al. Chiral metamaterials with negative refractive index based on four "U" split ring resonators. Appl. Phys. Lett. 97, 081901 (2010). doi: 10.1063/1.3457448
[28] Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005). doi: 10.1103/PhysRevLett.95.227401
[29] Zu, S., Bao, Y. J. & Fang, Z. Y. Planar plasmonic chiral nanostructures. Nanoscale 8, 3900–3905 (2016). doi: 10.1039/C5NR09302C
[30] Khanikaev, A. B. et al. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials. Nat. Commun. 7, 12045 (2016). doi: 10.1038/ncomms12045
[31] Hentschel, M., Schäferling, M., Weiss, T., Liu, N. & Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano. Lett. 12, 2542–2547 (2012). doi: 10.1021/nl300769x
[32] Cui, Y. H., Kang, L., Lan, S. F., Rodrigues, S. & Cai, W. S. Giant chiral optical response from a twisted-arc metamaterial. Nano. Lett. 14, 1021–1025 (2014). doi: 10.1021/nl404572u
[33] Verre, R. et al. Metasurfaces and colloidal suspensions composed of 3D Chiral Si nanoresonators. Adv. Mater. 29, 1701352 (2017). doi: 10.1002/adma.201701352
[34] Chen, Y., Gao, J. & Yang, X. D. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano. Lett. 18, 520–527 (2018). doi: 10.1021/acs.nanolett.7b04515
[35] Fedotov, V. A., Schwanecke, A. S., Zheludev, N. I., Khardikov, V. V. & Prosvirnin, S. L. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures. Nano. Lett. 7, 1996–1999 (2007). doi: 10.1021/nl0707961
[36] Zhao, Y. & Alù, A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B 84, 205428 (2011). doi: 10.1103/PhysRevB.84.205428
[37] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972). http://www.researchgate.net/publication/221725051_A_practical_algorithm_for_the_determination_of_phase_from_image_and_diffraction_plane_pictures
[38] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano. Lett. 15, 3122–3127 (2015). doi: 10.1021/acs.nanolett.5b00184
[39] Xie, Z. W. et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics 4, 2158–2164 (2017). doi: 10.1021/acsphotonics.7b00710
[40] Wei, Q. S., Huang, L. L., Li, X. W., Liu, J. & Wang, Y. T. Broadband multiplane holography based on plasmonic metasurface. Adv. Opt. Mater. 5, 1700434 (2017). doi: 10.1002/adom.201700434
[41] Huang, K. et al. Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev. 10, 500–509 (2016). doi: 10.1002/lpor.201500314
[42] Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016). doi: 10.1073/pnas.1611740113
[43] Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano. Lett. 14, 225–230 (2014). doi: 10.1021/nl403811d
[44] Hariharan, P. Optical Holography: Principles. Techniques and Applications. 2nd edn, (Cambridge University Press, Cambridge, 1996).
[45] Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003). doi: 10.1038/nature01935
[46] Hao, X., Kuang, C. F., Wang, T. T. & Liu, X. Effects of polarization on the de-excitation dark focal spot in STED microscopy. J. Opt. 12, 115707 (2010). doi: 10.1088/2040-8978/12/11/115707
[47] D'Ambrosio, V. et al. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3, 961 (2012). doi: 10.1038/ncomms1951
[48] Yi, X. N. et al. Hybrid-order Poincaré sphere. Phys. Rev. A. 91, 023801 (2015). doi: 10.1103/PhysRevA.91.023801
[49] Maleev, I. D. & Swartzlander, G. A. Composite optical vortices. J. Opt. Soc. Am. B 20, 1169–1176 (2003). doi: 10.1364/JOSAB.20.001169