[1] Specht, E. A., Braselmann, E. & Palmer, A. E. A critical and comparative review of fluorescent tools for live-cell imaging. Annu. Rev. Physiol. 79, 93–117 (2017). doi: 10.1146/annurev-physiol-022516-034055
[2] Dean, K. M. & Palmer, A. E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014). doi: 10.1038/nchembio.1556
[3] Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017). doi: 10.1038/nature22369
[4] Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).
[5] Zhanghao, K. et al. Super-resolution dipole orientation mapping via polarization demodulation. Light.: Sci. Appl. 5, e16166 (2016). doi: 10.1038/lsa.2016.166
[6] Kner, P. et al. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6, 339–342 (2009). doi: 10.1038/nmeth.1324
[7] Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015). doi: 10.1126/science.aab3500
[8] Guo, Y. T. et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442 (2018). E17. doi: 10.1016/j.cell.2018.09.057
[9] Han, Y. B. et al. Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions. Nat. Commun. 8, 1307 (2017). doi: 10.1038/s41467-017-01503-6
[10] Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013). doi: 10.1038/nchem.1546
[11] Lukinavičius, G. et al. Fluorogenic probes for multicolor imaging in living cells. J. Am. Chem. Soc. 138, 9365–9368 (2016). doi: 10.1021/jacs.6b04782
[12] Panchuk-Voloshina, N. et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47, 1179–1188 (1999). doi: 10.1177/002215549904700910
[13] Mujumdar, R. B. et al. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem. 4, 105–111 (1993). doi: 10.1021/bc00020a001
[14] Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015). doi: 10.1038/nmeth.3256
[15] Jones, S. A. et al. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8, 499–505 (2011). doi: 10.1038/nmeth.1605
[16] Hennig, S. et al. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett. 15, 1374–1381 (2015). doi: 10.1021/nl504660t
[17] Erazo-Oliveras, A. et al. Protein delivery into live cells by incubation with an endosomolytic agent. Nat. Methods 11, 861–867 (2014). doi: 10.1038/nmeth.2998
[18] Soomets, U. et al. Deletion analogues of transportan. Biochim. et. Biophys. Acta (BBA) - Biomembr. 1467, 165–176 (2000). doi: 10.1016/S0005-2736(00)00216-9
[19] Li, W. J., Nicol, F. & Szoka, F. C.Jr. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv. Drug Delivery Rev. 56, 967–985 (2004). doi: 10.1016/j.addr.2003.10.041
[20] Derossi, D. et al. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450 (1994).
[21] Copolovici, D. M. et al. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8, 1972–1994 (2014). doi: 10.1021/nn4057269
[22] Pan, D. et al. A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nat. Commun. 5, 5573 (2014). doi: 10.1038/ncomms6573
[23] Dubois, J. et al. Fluorescent and biotinylated analogues of docetaxel: synthesis and biological evaluation. Bioorg. Med. Chem. 3, 1357–1368 (1995). doi: 10.1016/0968-0896(95)00115-W
[24] Ma, Q. J. et al. A fluorescent sensor for low pH values based on a covalently immobilized rhodamine–napthalimide conjugate. Sens. Actuators B: Chem. 166–167, 68–74 (2012). doi: 10.1016/j.snb.2011.12.025
[25] Li, B. et al. A lysosomal probe for monitoring of pH in living cells and ovarian tumour. Dyes Pigments 139, 318–325 (2017). doi: 10.1016/j.dyepig.2016.12.043
[26] Georgiev, N. I., Bojinov, V. B. & Venkova, A. I. Design, synthesis and pH sensing properties of novel PAMAM light-harvesting dendrons based on rhodamine 6G and 1, 8-naphthalimide. J. Fluoresc. 23, 459–471 (2013). doi: 10.1007/s10895-013-1168-z
[27] Angeles-Boza, A. M. et al. Generation of endosomolytic reagents by branching of cell-penetrating peptides: tools for the delivery of bioactive compounds to live cells in cis or trans. Bioconjugate Chem. 21, 2164–2167 (2010). doi: 10.1021/bc100130r
[28] Ma, Y. et al. Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D- and L-arginine residues. J. Control. Release 162, 286–294 (2012). doi: 10.1016/j.jconrel.2012.07.022
[29] Erazo-Oliveras, A. et al. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals 5, 1177–1209 (2012). doi: 10.3390/ph5111177
[30] Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728 (1992). doi: 10.1016/0092-8674(92)90306-W
[31] Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003). doi: 10.1038/nbt765
[32] Keppler, A. et al. Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 32, 437–444 (2004). doi: 10.1016/j.ymeth.2003.10.007
[33] Keppler, A. et al. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc. Natl Acad. Sci. USA 101, 9955–9959 (2004). doi: 10.1073/pnas.0401923101
[34] Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008). doi: 10.1016/j.chembiol.2008.01.007
[35] Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011). doi: 10.1126/science.1207385