[1] Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22-30 (2009).
[2] Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010). doi: 10.1103/RevModPhys.82.3045
[3] Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009). doi: 10.1103/PhysRevLett.103.266803
[4] Dziawa, P. et al. Topological crystalline insulator states in Pb1-xSnxSe. Nat. Mater. 11, 1023-1027 (2012). doi: 10.1038/nmat3449
[5] Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821-829 (2014). doi: 10.1038/nphoton.2014.248
[6] Leder, M. et al. Real-space imaging of a topologically protected edge state with ultracold atoms in an amplitude-chirped optical lattice. Nat. Commun. 7, 13112 (2016). doi: 10.1038/ncomms13112
[7] Lignier, H. et al. Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev. Lett. 99, 220403 (2007). doi: 10.1103/PhysRevLett.99.220403
[8] Longhi, S. et al. Observation of dynamic localization in periodically curved waveguide arrays. Phys. Rev. Lett. 96, 243901 (2006). doi: 10.1103/PhysRevLett.96.243901
[9] Li, H. N., Kottos, T. & Shapiro, B. Driving-induced metamorphosis of transport in arrays of coupled resonators. Phys. Rev. A 97, 023846 (2018). doi: 10.1103/PhysRevA.97.023846
[10] Cardano, F. et al. Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun. 7, 11439 (2016). doi: 10.1038/ncomms11439
[11] Thuberg, D., Reyes, S. A. & Eggert, S. Quantum resonance catastrophe for conductance through a periodically driven barrier. Phys. Rev. B 93, 180301 (2016). doi: 10.1103/PhysRevB.93.180301
[12] Thuberg, D. et al. Perfect spin filter by periodic drive of a ferromagnetic quantum barrier. Phys. Rev. Lett. 119, 267701 (2017). doi: 10.1103/PhysRevLett.119.267701
[13] Reyes, S. A. et al. Transport through an AC-driven impurity: Fano interference and bound states in the continuum. New J. Phys. 19, 043029 (2017). doi: 10.1088/1367-2630/aa66fe
[14] Agarwala, A. & Sen, D. Effects of local periodic driving on transport and generation of bound states. Phys. Rev. B 96, 104309 (2017). doi: 10.1103/PhysRevB.96.104309
[15] Moskalets, M. & Büttiker, M. Floquet scattering theory of quantum pumps. Phys. Rev. B 66, 205320 (2002). doi: 10.1103/PhysRevB.66.205320
[16] Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009). doi: 10.1103/PhysRevB.79.081406
[17] Kitagawa, T. et al. Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84, 235108 (2011). doi: 10.1103/PhysRevB.84.235108
[18] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490-495 (2011). doi: 10.1038/nphys1926
[19] Kitagawa, T. et al. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010). doi: 10.1103/PhysRevB.82.235114
[20] Rudner, M. S. et al. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. 3, 031005 (2013).
[21] Balabanov, O. & Johannesson, H. Robustness of symmetry-protected topological states against time-periodic perturbations. Phys. Rev. B 96, 035149 (2017). doi: 10.1103/PhysRevB.96.035149
[22] Longhi, S. Quantum-optical analogies using photonic structures. Laser Photonics Rev. 3, 243-261 (2009). doi: 10.1002/lpor.200810055
[23] Bleckmann, F. et al. Spectral imaging of topological edge states in plasmonic waveguide arrays. Phys. Rev. B 96, 045417 (2017). doi: 10.1103/PhysRevB.96.045417
[24] Block, A. et al. Bloch oscillations in plasmonic waveguide arrays. Nat. Commun. 5, 3843 (2014). doi: 10.1038/ncomms4843
[25] Cherpakova, Z. et al. Transverse Anderson localization of surface plasmon polaritons. Opt. Lett. 42, 2165-2168 (2017). doi: 10.1364/OL.42.002165
[26] Jörg, C. et al. Dynamic defects in photonic Floquet topological insulators. New J. Phys. 19, 083003 (2017). doi: 10.1088/1367-2630/aa7c82
[27] Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698-1701 (1979). doi: 10.1103/PhysRevLett.42.1698
[28] Asbóth, J. K., Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions. (Cham: Springer, 2016).
[29] Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196-200 (2013). doi: 10.1038/nature12066
[30] Dal Lago, V., Atala, M. & Foa Torres, L. E. F. Floquet topological transitions in a driven one-dimensional topological insulator. Phys. Rev. A 92, 023624 (2015). doi: 10.1103/PhysRevA.92.023624
[31] Fruchart, M. Complex classes of periodically driven topological lattice systems. Phys. Rev. B 93, 115429 (2016). doi: 10.1103/PhysRevB.93.115429
[32] Shirley, J. H. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979-B987 (1965). doi: 10.1103/PhysRev.138.B979
[33] Gómez-León, A. & Platero, G. Floquet-Bloch theory and topology in periodically driven lattices. Phys. Rev. Lett. 110, 200403 (2013). doi: 10.1103/PhysRevLett.110.200403
[34] Usaj, G. et al. Irradiated graphene as a tunable Floquet topological insulator. Phys. Rev. B 90, 115423 (2014). doi: 10.1103/PhysRevB.90.115423
[35] Sakurai, J. J. & Napolitan, J. J. Modern Quantum Mechanics, 2nd edn. (Pearson, Harlow, 2011).
[36] Holthaus, M. Floquet engineering with quasienergy bands of periodically driven optical lattices. J. Phys. B:. Mol. Opt. Phys. 49, 013001 (2016). doi: 10.1088/0953-4075/49/1/013001
[37] Eckardt, A. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). doi: 10.1103/RevModPhys.89.011004
[38] Drezet, A. et al. Leakage radiation microscopy of surface plasmon polaritons. Mater. Sci. Eng.: B 149, 220-229 (2008). doi: 10.1016/j.mseb.2007.10.010
[39] Thyagarajan, K., Shenoy, M. R. & Ghatak, A. K. Accurate numerical method for the calculation of bending loss in optical waveguides using a matrix approach. Opt. Lett. 12, 296-298 (1987). doi: 10.1364/OL.12.000296