[1] Sauer, M. & Heilemann, M. Single-molecule localization microscopy in eukaryotes. Chem. Rev. 117, 7478–7509 (2017). doi: 10.1021/acs.chemrev.6b00667
[2] Bailey, B., Farkas, D. L., Taylor, D. L. & Lanni, F. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366, 44–48 (1993). doi: 10.1038/366044a0
[3] Drexhage, K. H., Kuhn, H. & Schäfer, F. P. Variation of the fluorescence decay time of a molecule in front of a mirror. Ber. Bunsen-Ges. Phys. Chem. 72, 329 (1968).
[4] Le Moal, E. et al. Enhanced fluorescence cell imaging with metal-coated slides. Biophys. J. 92, 2150–2161 (2007). doi: 10.1529/biophysj.106.096750
[5] Drexhage, K. H. Interaction of light with monomolecular dye layers. Prog. Opt. 12, 163–192 (1974). doi: 10.1016/S0079-6638(08)70266-X
[6] Chance, R. R., Prock, A. & Silbey, R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978).
[7] Yang, X. S. et al. Mirror-enhanced super-resolution microscopy. Light Sci. Appl. 5, e16134 (2016). doi: 10.1038/lsa.2016.134
[8] Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). doi: 10.1126/science.1127344
[9] Rust, M. J., Bates, M. & Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006). doi: 10.1038/nmeth929
[10] Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176 (2008). doi: 10.1002/anie.200802376
[11] Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010). doi: 10.1021/nl103427w
[12] Quan, T. W., Zeng, S. Q. & Huang, Z. L. Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging. J. Biomed. Opt. 15, 066005 (2010). doi: 10.1117/1.3505017
[13] Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015). doi: 10.1038/nmeth.3256
[14] Altman, R. B. et al. Cyanine fluorophore derivatives with enhanced photostability. Nat. Methods 9, 68–71 (2011). doi: 10.1038/nmeth.1774
[15] Li, W. X., Stein, S. C., Gregor, I. & Enderlein, J. Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy. Opt. Express 23, 3770–3783 (2015). doi: 10.1364/OE.23.003770
[16] Xu, K., Babcock, H. P. & Zhuang, X. W. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods 9, 185–188 (2012). doi: 10.1038/nmeth.1841
[17] Strambio-De-Castillia, C., Niepel, M. & Rout, M. P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11, 490–501 (2010). doi: 10.1038/nrm2928
[18] Löschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125, 570–575 (2012). doi: 10.1242/jcs.098822
[19] Göttfert, F. et al. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc. Natl. Acad. Sci. USA 114, 2125–2130 (2017). doi: 10.1073/pnas.1621495114
[20] Elsayad, K. et al. Spectrally coded optical nanosectioning (SpecON) with biocompatible metal-dielectric-coated substrates. Proc. Natl. Acad. Sci. USA 110, 20069–20074 (2013). doi: 10.1073/pnas.1307222110
[21] Nieuwenhuizen, R. P. J. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013). doi: 10.1038/nmeth.2448
[22] Franke, C., Sauer, M. & van de Linde, S. Photometry unlocks 3D information from 2D localization microscopy data. Nat. Methods 14, 41–44 (2017). doi: 10.1038/nmeth.4073
[23] Takeda, A., Wu, J. J. & Maizel, A. L. Evidence for monomeric and dimeric forms of CD45 associated with a 30-kDa phosphorylated protein. J. Biol. Chem. 267, 16651–16659 (1992). doi: 10.1016/S0021-9258(18)42052-2
[24] Cabriel, C., Bourg, N., Dupuis, G. & Lévêque-Fort, S. Aberration-accounting calibration for 3D single-molecule localization microscopy. Opt. Lett. 43, 174–177 (2018). doi: 10.1364/OL.43.000174
[25] Chizhik, A. I., Rother, J., Gregor, I., Janshoff, A. & Enderlein, J. Metal-induced energy transfer for live cell nanoscopy. Nat. Photonics 8, 124–127 (2014). doi: 10.1038/nphoton.2013.345
[26] Karedla, N. et al. Three-dimensional single-molecule localization with nanometer accuracy using Metal-Induced Energy Transfer (MIET) imaging. J. Chem. Phys. 148, 204201 (2018). doi: 10.1063/1.5027074
[27] Ropp, C. et al. Nanoscale probing of image-dipole interactions in a metallic nanostructure. Nat. Commun. 6, 6558 (2015). doi: 10.1038/ncomms7558
[28] Raab, M., Vietz, C., Stefani, F. D., Acuna, G. P. & Tinnefeld, P. Shifting molecular localization by plasmonic coupling in a single-molecule mirage. Nat. Commun. 8, 13966 (2017). doi: 10.1038/ncomms13966
[29] Mack, D. L. et al. Decoupling absorption and emission processes in super-resolution localization of emitters in a plasmonic hotspot. Nat. Commun. 8, 14513 (2017). doi: 10.1038/ncomms14513
[30] Schreiber, B. et al. Enhanced fluorescence resonance energy transfer in G-pro-tein-coupled receptor probes on nanocoated microscopy coverslips. ACS Photonics 5, 2225–2233 (2018). doi: 10.1021/acsphotonics.8b00072
[31] Douglass, K. M., Sieben, C., Archetti, A., Lambert, A. & Manley, S. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination. Nat. Photonics 10, 705–708 (2016). doi: 10.1038/nphoton.2016.200
[32] Schreiber, B., Elsayad, K. & Heinze, K. G. Axicon-based Bessel beams for flat-field illumination in total internal reflection fluorescence microscopy. Opt. Lett. 42, 3880–3883 (2017). doi: 10.1364/OL.42.003880