[1] Andrews, J. G. et al. What will 5G be? IEEE J. Sel. Areas Commun. 32, 1065-1082 (2014). doi: 10.1109/JSAC.2014.2328098
[2] Zou, W. W. et al. All-optical central-frequency-programmable and bandwidth-tailorable radar. Sci. Rep. 6, 19786 (2016). doi: 10.1038/srep19786
[3] Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341-345 (2014). doi: 10.1038/nature13078
[4] Valley, G. C. Photonic analog-to-digital converters. Opt. Express 15, 1955-1982 (2017).
[5] Khilo, A. et al. Photonic ADC: overcoming the bottleneck of electronic jitter. Opt. Express 20, 4454-4469 (2012). doi: 10.1364/OE.20.004454
[6] Yao, J. P. Microwave photonics. J. Light. Technol. 27, 314-335 (2009). doi: 10.1109/JLT.2008.2009551
[7] Juodawlkis, P. W. et al. Optically sampled analog-to-digital converters. IEEE Trans. Microw. Theory Tech. 49, 1840-1853 (2001). doi: 10.1109/22.954797
[8] Yang, G. et al. Theoretical and experimental analysis of channel mismatch in time-wavelength interleaved optical clock based on mode-locked laser. Opt. Express 23, 2174-2186 (2015). doi: 10.1364/OE.23.002174
[9] Yang, G. et al. Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter. Opt. Express 24, 24061-24074 (2016). doi: 10.1364/OE.24.024061
[10] Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). doi: 10.1038/nature14539
[11] Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097-1105 (2012).
[12] Tompson, J. et al. Joint training of a convolutional network and a graphical model for human pose estimation. Adv. Neural Inf. Process. Syst. 2, 1799-1807 (2014).
[13] Anthimopoulos, M. et al. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35, 1207-1216 (2016). doi: 10.1109/TMI.2016.2535865
[14] Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354-359 (2017). doi: 10.1038/nature24270
[15] Lu, X. et al. Speech enhancement based on deep denoising autoencoder. In Interspeech 436-440 (2013).
[16] Xie, J., Xu, L. & Chen, E. Image denoising and inpainting with deep neural networks. Adv. Neural Inf. Process. Syst. 25, 350-358 (2012).
[17] Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437-1443 (2017). doi: 10.1364/OPTICA.4.001437
[18] Zhu, B. et al. Image reconstruction by domain-transform manifold learning. Nature 555, 487-492 (2018). doi: 10.1038/nature25988
[19] Won, R. Intelligent learning with light. Nat. Photonics 12, 571-573 (2018). doi: 10.1038/s41566-018-0265-6
[20] Wiecha, P. R. et al. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol. 14, 237-244 (2019). doi: 10.1038/s41565-018-0346-1
[21] Pierno, L. et al. Optical switching matrix as time domain demultiplexer in photonic ADC. In Proc. 2013 European Microwave Integrated Circuit Conference 41-44 (IEEE, 2013).
[22] He, K. M. et al. Deep residual learning for image recognition. In Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition 770-778 (IEEE, 2016).
[23] Zhang, K. et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142-3155 (2017). doi: 10.1109/TIP.2017.2662206
[24] Coates, A. et al. Deep learning with COTS HPC systems. In Proc. 30th International Conference on International Conference on Machine Learning 28, III-1337-III-1345 (2013).
[25] Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. Proc. 44th Annual International Symposium on Computer Architecture 1-12 (ACM, 2017).
[26] Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60-67 (2018). doi: 10.1038/s41586-018-0180-5
[27] Shen, Y. C. H. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 1, 441-446 (2017).
[28] Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004-1008 (2018). doi: 10.1126/science.aat8084
[29] Park, S. C., Park, M. K. & Kang, M. G. Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20, 21-36 (2003). doi: 10.1109/MSP.2003.1203207
[30] Shi, W. Z. H. et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 1874-1883 (IEEE, 2016).
[31] Han, D., Kim, J., Kin J. Deep pyramidal residual networks[EB/OL] (2016). https://arxiv.org/abs/1610.02915.
[32] He, K. M. et al. Identity mappings in deep residual networks. In Proc. 14th European Conference Computer Vision 630-645 (Springer, 2016).
[33] Prakash, V. N. V. S., Prasad, K. S. & Prasad, T. J. Deep learning approach for image denoising and image demosaicing. Int. J. Comput. Appl. 168, 18-26 (2017).
[34] IEEE. IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=929859&contentType=Standards (2001).
[35] Klein, S. et al. Adaptive stochastic gradient descent optimisation for image registration. Int. J. Comput. Vis. 81, 227-239 (2009). doi: 10.1007/s11263-008-0168-y
[36] Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1, 67-82 (1997). doi: 10.1109/4235.585893
[37] GPU Specs database https://www.techpowerup.com/gpu-specs/ (2017).
[38] Google. Cloud TPU https://cloud.google.com/tpu/ (2019).
[39] Xilinx Alveo. U200: Adaptable Accelerator Cards for Data Center Workloads. https://www.xilinx.com/publications/product-briefs/alveo-product-brief.pdf (2018).