[1] Griffiths, P. R. & de Haseth, J. A. Fourier Transform Infrared Spectrometry 2nd edn (Wiley, Hoboken, NJ, 2007).
[2] Haas, J. & Mizaikoff, B. Advances in mid-infrared spectroscopy for chemical analysis. Annu. Rev. Anal. Chem. 9, 45-68 (2016). doi: 10.1146/annurev-anchem-071015-041507
[3] Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771-1791 (2014). doi: 10.1038/nprot.2014.110
[4] Doherty, J., Cinque, G. & Gardner, P. Single-cell analysis using Fourier transform infrared microspectroscopy. Appl. Spectrosc. Rev. 52, 560-587 (2017). doi: 10.1080/05704928.2016.1250214
[5] Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photonics 6, 440-449 (2012). doi: 10.1038/nphoton.2012.142
[6] Cinque, G., Frogley, M. D. & Bartolini, R. Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22. Rend. Lince-. 22, 33-47 (2011). doi: 10.1007/s12210-011-0149-x
[7] Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 1, 97-105 (2007). doi: 10.1038/nphoton.2007.3
[8] Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542-1544 (2004). doi: 10.1364/OL.29.001542
[9] Maslowski, P. et al. Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs. Phys. Rev. A 93, 021802 (2016). (R). doi: 10.1103/PhysRevA.93.021802
[10] Biegert, J., Bates, P. K. & Chalus, O. New mid-infrared light sources. IEEE J. Sel. Top. Quantum Electron. 18, 531-540 (2012). doi: 10.1109/JSTQE.2011.2135842
[11] Rauter, P. & Capasso, F. Multi-wavelength quantum cascade laser arrays. Laser Photonics Rev. 9, 452-477 (2015). doi: 10.1002/lpor.201500095
[12] Kole, M. R., Reddy, R. K., Schulmerich, M. V., Gelber, M. K. & Bhargava, R. Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser. Anal. Chem. 84, 10366-10372 (2012). doi: 10.1021/ac302513f
[13] Pigeon, J. J., Tochitsky, S. Y., Gong, C. & Joshi, C. Supercontinuum generation from 2 to 20 µm in GaAs pumped by picosecond CO2 laser pulses. Opt. Lett. 39, 3246-3249 (2014). doi: 10.1364/OL.39.003246
[14] Petersen, C. R. et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 8, 830-834 (2014). doi: 10.1038/nphoton.2014.213
[15] Møller, U. et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt. Express 23, 3282-3291 (2015). doi: 10.1364/OE.23.003282
[16] Kubat, I. et al. Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Opt. Express 22, 3959-3967 (2014). doi: 10.1364/OE.22.003959
[17] Yu, Y. et al. A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photonics Rev. 8, 792-798 (2014). doi: 10.1002/lpor.201400034
[18] Adler, F. et al. Phase-stabilized, 1.5W frequency comb at 2.8-4.8 μm. Opt. Lett. 34, 1330-1332 (2009). http://www.researchgate.net/publication/24398691_Phase-stabilized_15_W_frequency_comb_at_28-48_mm?_sg=Xl0ecs19gq-c0owGLDuceJlAPS_zmDX1W5OlJP1e1v2PVO2DfwibrskQQq9YIy23POrvMbfTE8cuGqn20vNcMYlYLfXHdQ
[19] Seidel, M. et al. Multi-watt, multi-octave, mid-infrared femtosecond source. Science Advances 4 . 1526-1534 (2018). doi: 10.1126/sciadv.aaq1526
[20] Elu, U. et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica 4, 1024-1029 (2017). doi: 10.1364/OPTICA.4.001024
[21] von Grafenstein, L. et al. 5 µm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate. Opt. Lett. 42, 3796-3799 (2017). doi: 10.1364/OL.42.003796
[22] Sanchez, D. et al. 7 µm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 µm. Optica 3, 147-150 (2016). doi: 10.1364/OPTICA.3.000147
[23] Steinle, T., Mörz, F., Steinmann, A. & Giessen, H. Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 μm. Opt. Lett. 41, 4863-4866 (2016). http://www.ncbi.nlm.nih.gov/pubmed/27805636
[24] Gambetta, A. et al. Milliwatt-level frequency combs in the 8-14 µm range via difference frequency generation from an Er: fiber oscillator. Opt. Lett. 38, 1155-1157 (2013). doi: 10.1364/OL.38.001155
[25] Keilmann, F. & Amarie, S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. J. Infrared Millim.Terahertz Waves 33, 479-484 (2012). doi: 10.1007/s10762-012-9894-x
[26] Junginger, F. et al. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett. 35, 2645-2647 (2010). doi: 10.1364/OL.35.002645
[27] Pupeza, I. et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nat. Photonics 9, 721-724 (2015). doi: 10.1038/nphoton.2015.179
[28] Zhang, J. et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1. Light Sci. Appl. 7, 17180 (2018). doi: 10.1038/lsa.2017.180
[29] Vasilyev, S. et al. Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe. Opt. Mater. Express 7, 2636-2650 (2017). doi: 10.1364/OME.7.002636
[30] Gebhardt, M. et al. Nonlinear pulse compression to 43 W GW-class few-cycle pulses at 2 µm wavelength. Opt. Lett. 42, 4179-4182 (2017). doi: 10.1364/OL.42.004179
[31] Petrov, V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Prog. Quantum Electron. 42, 1-106 (2015). doi: 10.1016/j.pquantelec.2015.04.001
[32] Fattahi, H., Schwarz, A., Keiber, S. & Karpowicz, N. Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry. Opt. Lett. 38, 4216-4219 (2013). doi: 10.1364/OL.38.004216
[33] Baltuška, A., Fuji, T. & Kobayashi, T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 133901 (2002). doi: 10.1103/PhysRevLett.88.133901
[34] Gaida, C. et al. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power. Opt. Lett. 41, 4130-4133 (2016). doi: 10.1364/OL.41.004130
[35] Gebhardt, M. et al. Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses. Opt. Express 23, 13776-13787 (2015). doi: 10.1364/OE.23.013776
[36] Gaida, C. et al. Self-compression in a solid fiber to 24 MW peak power with few-cycle pulses at 2 µm wavelength. Opt. Lett. 40, 5160-5163 (2016). doi: 10.1364/OL.40.005160
[37] Stutzki, F. et al. 152 W average power Tm-doped fiber CPA system. Opt. Lett. 39, 4671-4674 (2014). doi: 10.1364/OL.39.004671