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Abstract

Three-dimensional (3D) semiconductor devices can address the limitations of traditional two-dimensional (2D)
devices by expanding the integration space in the vertical direction. A 3D NOT-AND (NAND) flash memory device is
presently the most commercially successful 3D semiconductor device. It vertically stacks more than 100
semiconductor material layers to provide more storage capacity and better energy efficiency than 2D NAND flash
memory devices. In the manufacturing of 3D NAND, accurate characterisation of layer-by-layer thickness is critical
to prevent the production of defective devices due to non-uniformly deposited layers. To date, electron
microscopes have been used in production facilities to characterise multilayer semiconductor devices by imaging
cross-sections of samples. However, this approach is not suitable for total inspection because of the wafer-cutting
procedure. Here, we propose a non-destructive method for thickness characterisation of multilayer semiconductor
devices using optical spectral measurements and machine learning. For > 200-layer oxide/nitride multilayer stacks,
we show that each layer thickness can be non-destructively determined with an average of approximately 1.6 A
root-mean-square error. We also develop outlier detection models that can correctly classify normal and outlier
devices. This is an important step towards the total inspection of ultra-high-density 3D NAND flash memory
kdevices. It is expected to have a significant impact on the manufacturing of various multilayer and 3D devices.

Introduction

The increasing demand for data storage systems, ranging
from data centres to various smart devices, has led to an
higher-capacity, more compact
memory devices. As the cell-to-cell distance has decreased

increasing need for
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to less than 10 nm, traditional two-dimensional (2D)
scaling methods suffer from cell-to-cell interference and
technical difficulties in fabrication processes'”. As an
alternative approach, three-dimensional (3D) scaling has
been proposed, and it has increased the number of
transistors per area by overcoming the spatial limitations of
traditional 2D devices’. Most notably, the storage capacity
and energy efficiency of 3D NAND flash memory devices
have been significantly improved by stacking memory cells
vertically™’. Since the first launch of 3D NAND with 24
word line layers in 2013°, the number of layers has been
rapidly increasing, and 3D NAND with approximately 100
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word line layers has recently been commercialised’.
Recently developed 3D NAND flash memory has a storage
density of 1 terabit per 180 mm’ footprint’. Driven by
demands for more massive storage devices, the market size
for 3D NAND is expected to grow exponentially from
$9 billion in 2017 to $100 billion by 2025’

There are several different methods of fabricating 3D
NAND'"". Nevertheless, building multilayer structures by
alternating layers of semiconductor materials in the initial
fabrication process (Fig. 1a) is the same for all approaches.
In the multilayer deposition process, residual stresses can
occur owing to the different thermal expansion coefficients
between the layers'”. This results in undesirable thickness
variations after the process is complete. Even small
thickness variations in each layer can affect the circuit
performance of the final product'™'. Therefore, it is highly
desirable to accurately assess the thickness of the stacked
semiconductor layers.

To date, various measurement methods have been used
in semiconductor device fabrication facilities to measure
the nanoscale features of semiconductor devices' ™. In
particular, transmission electron microscopy (TEM) has
been used to measure the thickness of semiconductor
multilayer stacks””. TEM has the advantage of high
resolution and high magnification. However, owing to the
destructive nature of the required wafer-cutting process,
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this technique cannot be used for total inspection. Another
cross-sectional approach, for example, is to measure the
cross-section of a multilayer by scatterometry with fast
calculations using analytic approximation’. Interference
microscopy can be used for the simultaneous
characterisation of the multilayer thickness and the surface
imaging”. Spectral ellipsometry, a non-destructive optical
method, has been used for thickness
characterisation” ™. However, as the number of layers
thickness

multilayer

increases, accurate characterisation using
spectroscopic ellipsometry becomes more difficult on
account of errors in the measurement instruments and
changes in the material properties of each layer under
different fabrication conditions. Meanwhile, because the
number of layers in 3D NAND will increase well above
200 layers in the near future, machine learning can be more
effective for thickness characterisation of multilayer
structures as compared to fitting methods™. This is
because the machine learning algorithm effectively learns
the correlations between spectroscopic data and multilayer
thickness physical interpretation. Although
thickness characterisation by artificial neural networks
(ANNs)  has reported” ',  the
characterisations were conducted only for a few (e.g. less
than four) layers.

We herein demonstrate a non-destructive method for
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thickness characterisation of each layer in the > 200-layer
semiconductor multilayer stacks that are wused in
commercial 3D NAND devices. By exploiting the
structural similarity between semiconductor multilayer

stacks and dielectric multilayer mirrors™”, various
spectroscopic methods, including ellipsometric and
reflectance  measurements™”  (Fig. 1b), which are

commonly used in dielectric mirror analysis, are employed.
Based on the obtained spectroscopic data (Fig. lc),
machine learning is used to predict the thickness of each
layer. From theoretical optical modelling (see ‘Materials
and methods’ section), we exploit the well-known fact that
the thickness of each layer affects the spectroscopic
ellipsometric and reflectometric spectra. We can predict the
thickness of each layer with an average root-mean-square
error (RMSE) of approximately 1.6 A (1.6 x 107" m, with
+£0.2 A standard deviation) for > 200-layer 3D
semiconductor devices. In addition, using a machine
learning model trained with simulated data, it is possible to
correctly classify normal and outlier devices (e.g. a
multilayer structure having a layer with > 30 A deviation
from the targeted layer thickness).

Results

Accurate determination of layer-by-layer thickness
for normal samples. The tested samples were multilayer
semiconductor devices with alternating layers of oxide
(Si0,) and nitride (SizN4) on a silicon substrate. The total
number of layers was approximately 200, with a total
thickness of approximately 5.5 um. Most layers consisted
of quasi-periodic oxide/nitride layers with a thickness of
200 A-330 A, except for several top and bottom layers with
a thickness of 100 A-1,600 A. For multilayer thickness
prediction, ellipsometric data of 148 normal samples were
used. For an outlier detection test, reflectance data of 45
normal samples and three outlier samples were used.
Commercial ellipsometers and reflectometers (Atlas XP+,
Nanometrics, Inc.), which were installed in the production
lines of the 3D devices characterised in this work, were
used to obtain the spectroscopic data. The ellipsometric
data (psi and delta) were measured at an incident angle of
65° for a spectral range of 216-905 nm (Fig. 1c). Psi and
delta were measured at 991 different wavelengths. In total,
each sample had 1982 (= 991 x 2) measured psi and delta
values. The reflectance was measured at an incident angle
of 0° for a spectral range of 450-790 nm (Fig. Ic). The
reflectance was measured at 741 different wavelengths.

After the spectroscopic measurements were conducted,
each wafer was cut, and its cross-section was imaged by
TEM. The TEM images were used as a reference for
evaluating the accuracy of the proposed method. From the
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TEM images we determined that, even for the normal
samples, the actual layer thickness could vary by up to
approximately 20-30 A from the target thickness, which
corresponded to approximately 10-15% errors in the
fabrication. The standard deviation of each layer thickness
was in the range of approximately 3-11 A (see Fig. 2a, b
for the distributions of oxide and nitride layers,
respectively).

To determine the thickness of each layer from the
measured spectral data, machine learning was used. For the
machine learning model, spectral data and layer
thicknesses were used as inputs and outputs, respectively.
A total of 148 normal samples were randomly split into a
training set of 125 samples and a test set of 23 samples.
Owing to the limited number of available samples with
TEM data, the number of training samples was increased to
5,000 by data augmentation based on noise injection
methods (see ‘Materials and methods’ section). We used
various machine learning models, such as support vector
regression, linear regression models, and artificial neural
networks. To evaluate the models, we implemented a five-
fold cross-validation test. The linear regression model
showed the best performance. Because the initial random
split of 148 samples could reflect a biased result, we
randomly split the dataset into 100 different combinations
of training and test sets and trained the linear regression
model on each training set (see Fig. S1). Finally, we
applied the trained model to each test set.

Fig. 2a, b show the actual thickness distributions of 195
quasi-periodic layers for 148 normal samples (determined
by the TEM images). After the deposition process, the
oxide layer thickness tended to increase by approximately
7 A, and the nitride layer thickness tended to decrease by
approximately 4 A from the original design target. The
peak-to-peak distribution (grey bars in Fig. 2a, b of each
layer thickness ranged from 10 A to 50 A. The standard
deviation of the actual thickness (red and blue bars in
Fig. 2a, b) was approximately 3-5 A in most layers, while
deviations of up to approximately 11 A were also observed
in some layers. Fig. 2c, d show the distributions of the
RMSE of each layer thickness (i.e. the RMSE between the
predicted layer thickness and the actual layer thickness
determined by spectral data-driven machine learning and
TEM imaging, respectively) for 23 test samples over 100
repetitions of random data splits. This result shows that our
spectral measurement-based machine learning method
achieved an average prediction RMSE of approximately
1.6 A for each layer (red and blue circles for oxide and
nitride layers, respectively).

To demonstrate the effectiveness of the proposed
method for prediction, Fig.3 presents a comparison
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The average RMSE (blue circles) lies in the range of ~1.2-2.2 A.

Fig. 2 Layer thickness distribution and prediction RMSE results. a Thickness deviation from the design target for each oxide layer for 148 samples
(determined by TEM images). b Thickness deviation from the design target for each nitride layer for 148 samples (determined by TEM images). ¢ Prediction RMSE for
quasi-periodic oxide layers. For each layer, the distribution of RMSE between the actual thickness and the predicted thickness for 23 test samples over 100 repetitions
of random data splits is plotted with error bars. The average RMSE (red circles) occurs in the range of ~1.3-2.0 A. d Prediction RMSE for quasi-periodic nitride layers.
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between the actual thickness (determined by the TEM
images) and the predicted thickness of several nitride and
oxide layers (selected from the bottom, middle, and top
parts of the multilayer structure) in the 23 test samples. The
predicted thickness aligns well with the actual thickness,
regardless of the material or layer position used, with an
average prediction RMSE of approximately 1.6 A.

To evaluate the correlation between the predicted and
actual layer thicknesses, the R-squared value was
calculated for each layer. Fig. 4a, b show the distribution of
the R-squared values for each of the oxide and nitride
layers, respectively. As shown in Fig. 4a, the highest and
lowest R-squared values are 0.97 (41" layer, denoted by (1))
and 0.24 (35" layer, denoted by (ii)), respectively. As
shown in Fig. 4c, for both the 41 and 35" layers, the
predicted thickness (denoted by circles) is consistent with
the actual thickness (denoted by triangles) with an RMSE
of approximately 1.6 A. Thus, the resulting R-squared
value for the 35" layer is much lower than that of the 41"
layer because the actual thickness distribution is much
narrower (2.1 A and 10.3 A RMS distributions for the 35"

and 41" layers, respectively). As shown in Fig. 4d, even
though the actual total layer thickness is widely distributed
from —400 to +900 A from the design target, the predicted
total thickness, which is the sum of all predicted layer
thicknesses, has a high correlation (R-squared = 0.93) with
the actual total thickness.

It is noteworthy that the number of training samples
could be reduced at the expense of slightly degraded
prediction performance. Figure S2 shows the average
RMSE of each layer according to the number of training
samples used for thickness characterisation of the > 200-
layer structure. For example, when using 25 and 75
training samples (instead of 125), the RMSEs for the test
set remain ~2.1 A and ~1.75 A, respectively. In addition, to
investigate the applicability of our method, we applied our
method to different multilayer oxide/nitride structures with
~65, ~110, and ~130 layers. As summarised in Table S1,
1.4-1.7 A level RMSEs (over 100 repetitions of random
data splits) could be obtained for each case when > 60
samples for training were used.

Outlier device detection using simulated data. In
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addition to the accurate determination of the multilayer
thickness under normal fabrication conditions (as shown in
Figs. 2-4), which is helpful for controlling etching and
deposition processes, we developed another machine
learning model that can detect outliers when layer
thicknesses significantly vary (e.g. by more than 30 A)
from the design target. To distinguish outlier cases from
normal cases, both normal and outlier samples are required
to train the machine learning model. However, because it is
impossible to fabricate all possible outlier samples for this
training, we used a large number of simulated spectral data
for more effective and economical training. The measured
reasonable agreement with the
simulated data. Therefore, reflectance data were used for
the outlier detection models. We first generated 1,000
simulated data with a wide range of thickness distributions
as outlier cases. We also generated 1,800 augmented data
(as normal cases) by a noise injection method from 18
normal samples. A total of 2,800 training data points were
used to train the linear regression model (see ‘Materials
and methods’ section and Fig. S3).

To test the developed outlier detection method, three
outlier samples were prepared by intentionally growing the
42" layer thickness to be approximately 50 A thinner than

reflectance showed

the normal fabrication condition. As shown in Fig. 5a, the
reflectance of the outlier sample (red circle line) is blue-
shifted by approximately 5 nm compared to the normal
sample (blue triangle line). For validation, 10 normal
samples and one outlier sample were used. Finally, the test
was performed for 17 normal samples and two outlier
samples. Details are provided in the ‘Materials and
methods’ section.

When defining an outlier case with a one-layer thickness
exceeding 30 A from the target, all the normal samples
were classified as normal cases, and all the outlier samples
were classified as outlier cases. When we modified the
outlier threshold from 10 A to 50 A, we obtained a sensi-
tivity-specificity graph, as shown in Fig. 5b. For the normal
samples, the thicknesses of all layers were predicted to
have an average RMSE of 7.4 A from the target (Fig. 5¢).
For the outlier samples, the average thickness of the 42"
layer was predicted to have a —35 A deviation from the
target. The remaining layers were predicted to have an
average RMSE of 8.6 A from the target (Fig.5d).
Therefore, machine learning based on simulated data could
successfully detect the outliers (faulty devices) and the
exact erroneous layer location in the device.
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Discussion

In summary, we demonstrated a non-destructive method
to accurately characterise each layer thickness and to detect
outliers in ultra-high-density 3D semiconductor devices
consisting of more than 200 layers. The machine learning
approach uses a data-driven algorithm that considers only
the correlation between spectral data and thickness
information. We could thus eliminate many measurement-
related issues, such as absolute accuracy errors and drift in
measurement instruments, as well as in situ material
properties that are not completely measurable (e.g. changes
in the wavelength-dependent refractive indices of each
layer under different fabrication conditions). When using
noisy data as input to machine learning algorithms, the
trained model is robust against various measurement errors.
In addition, our outlier detection method can detect
significant thickness defects by using a relatively small
number of TEM measurements (e.g. 18 samples used as
normal cases in this work) and massive simulated data
(used as outlier cases). As a result, this method is highly

suitable for application in actual semiconductor
manufacturing facilities. In our work, all the spectroscopic
data 3D NAND

manufacturing lines, and only tens to hundreds of TEM

were obtained in commercial
measurements were required for model training. It is
noteworthy that the proposed approach is suitable for the
thickness characterisation of multilayer systems composed
thickness

characterisation for multilayer systems composed of

of dielectric materials, whereas the

materials with high extinction coefficients, such as titanium
nitride (TiN) or tungsten, is challenging owing to the
relatively short penetration depth (of the order of tens of
nanometres) of those materials.

Our demonstrated method can be readily applied for the
total inspection of various 3D semiconductor devices as well
as many other types of highly complex multilayer stacked
devices, such as ultra-broadband dielectric mirrors for high

36,37

field physics and ultrafast science ™, thin-film bio-sensors

3840 41,42

for biotechnology ", and hyperbolic metamaterials
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actual thickness deviation of the 42™ layer is —48 A from the target, and the corresponding predicted thickness deviation is =37 A from the target.

Materials and methods

Theoretical model of spectroscopic data. In this
section, we describe the process of deriving the theoretical
values of reflectance, psi, and delta”. In a multilayer
system, the tangential components of electric field £ and
magnetic field F are continuous at the boundary between
each layer. The tangential components of the electric field
and the magnetic field at the interface of each layer have

the following relationship:
E | _ cosd  isind/m E, (1
H, || imysiné  cosé H,

where E, and H, are the fields at the top interface; E, and

H, are the fields at the bottom interface. The phase

2nNdcos 0

thickness 0 is expressed as , where N is the

complex refractive index of the layer; d denotes the layer
thickness; 6 denotes the incident angle of the light; A
represents the light wavelength, and 7, is the optical
admittance of the medium. In a multilayer system, Eq. 1 is
extended for all layers and expressed by a matrix-cascaded
system, as shown in Eq. 2:

B q cosd,  isino,/n, 1
[ C ]:{l_[m[ in,sind, cosé/,]7 ]}[ M ] 2)
where 6, is the phase thickness; 7, denotes the optical
admittance of the r-th medium; 7, represents the optical
admittance of the substrate; ¢ is the number of layers, and
B and C are the normalised electric and magnetic fields,
respectively. Finally, we obtain the theoretical reflectance

B-C B-C\
R=rr= o o 3)

as follows:

where r is the reflection coefficient, and 17, is the optical
admittance of the incident medium. For an oblique incident
1

angle, 7, is multiplied by “osd for p-polarisation and by
cos

cosf for s-polarisation. Psi (¥) and delta (A) are derived

from Eq. 4 as follows:

r ,

£ =tan(¥P)e 4)

rg

where r, is the reflection coefficient for p-polarisation, and

r, is the reflection coefficient for s-polarisation. Varying
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the layer thickness leads to a change in the phase thickness
for each wavelength of incident light, which results in
changes in interference patterns of reflectance, psi, and delta.

Data preparation. Semiconductor multilayer stacks that
are used for commercial 3D NAND devices were obtained
at different locations on each wafer. For multilayer
thickness prediction, 148 normal samples were obtained
from 10 different wafers (10 to 17 different locations on
each wafer). A spectroscopic ellipsometer installed in the
production lines was used to measure 991 psi-delta pairs
for each sample. For outlier detection, 45 normal samples
were obtained from four different wafers, and three outlier
samples were obtained from one wafer. A total of 741
reflectances were measured for each sample using a
spectroscopic reflectometer in the production lines. High-
resolution cross-sectional images of the samples were
obtained using TEM.

Noise injection method. Data augmentation is widely
used for a relatively small amount of data in many
applications” . Because our objective was to access only a
small number of normal-condition samples (in commercial
device production lines), we augmented the training
samples by employing a noise-injection method. For
multilayer metrology of normal conditions, 125 training
samples were augmented by injecting noise, resulting in a
total of 5,000 augmented data points (40 augmented data
points per training sample). Note that 40 augmented data
points for each training sample shared the same thickness
profile. For each augmented data point, the spectral data
could be shifted to the left or right (in wavelength) or
shifted up or down as a whole from the original positions.

As shown in Fig. S4, o is added to all spectral data to
inject vertical offset noise. To inject lateral offset noise by
B, shifted spectral data at (216 + B) nm to (905 + B) nm
should be obtained. However, since psi and delta were
measured for wavelengths of 216-905 nm, we interpolated
the original spectral data into shifted spectral ranges to
obtain the shifted spectral data. When shifting spectral data
to the left or right, redundant values can be generated
because the shifted spectral data deviate from the actual
measured range. These redundant values are truncated at
both ends. A total of 12 redundant values were removed.
Thus, 1,970 dimensional inputs were used.

Considering various possible noise sources during
measurement (such as drift errors, wavelength errors, and
refractive index changes), we added different amounts of
noise under various conditions to the original spectral data.
As shown in Fig. S5, injection of vertical offset noise
uniformly distributed from —0.04 to +0.04 and lateral offset
noise uniformly distributed from —6 to +6 nm was the best
condition for thickness prediction performance for the
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validation set. For an outlier detection test, we also
augmented the training samples by employing the noise
injection method. Eighteen training samples representing
normal conditions were increased to 1,800 augmented data
points (100 augmented data per training sample). For
lateral noise injection, three redundant values were
truncated at each end such that the shifted reflectance did
not contain the redundant values. A total of 735
dimensional inputs were used. As shown in Fig. S5,
injection of lateral offset noise uniformly distributed from
—4 to +4 nm without using vertical noise injection was the
best condition for thickness prediction performance for the
validation set.

Performance comparison with psi and delta
combinations. For multilayer metrology under normal
conditions, we compared the RMSE of the validation set
using a linear model to determine which combination of
spectral data (psi and delta) should be used as the input to
the model. As shown in Table S2, when both psi and delta
are used, the RMSE of the validation set has the lowest
value of 2.75 A. Because machine learning learns the
correlation  between the input (spectroscopic
measurements) and the output (layer thicknesses) rather
than interpreting the physical meaning of the input data,
there is no significant difference in the prediction RMSE,
regardless of whether psi or delta is used. From these
results, we find that the thickness prediction model
performs best when using all spectroscopic data as inputs.

Evaluation of machine learning models For multilayer
metrology under normal conditions, we first randomly split
148 samples into 125 training samples and 23 test samples.
The 125 training samples were divided into five folds (25
samples per fold). One hundred samples (four of five folds)
were converted to 4,000 augmented data using the noise
injection method to train the model, and the remaining 25
samples (one of five folds) were used as the validation set
to evaluate the model. Each fold was used as a validation
set, and five validation results were averaged to measure
the model performance. This method, called K-fold cross-
validation'™"’ (in this case, five-fold cross-validation), is
widely used to identify the best model. For the model
evaluation, the RMSE between the predicted thicknesses
and the actual thicknesses of the validation set was used.
As shown in Table S3, the RMSE of the validation set was
found to be the lowest for the linear model. We evaluated
the performance of the linear model according to the
training data size, which is shown as the learning curve in
Fig. S6. The RMSE was calculated by increasing the
training data size from 40 to 4,000 (with 40 intervals).

As the number of training data increased, the RMSE of
the training set increased because it became more difficult
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to perfectly fit the training data. Meanwhile, the RMSE of
the validation set decreased as the model became better
fitted to unseen data. Because the RMSE of the validation
set approached the RMSE of the training set until settling,
the 4,000 training data were sufficient to train the linear
model without overfitting.

For the implementation, we used a Titan X graphical
processing unit (GPU). Generating 5,000 augmented data
from 125 training samples by the noise-injection method
required approximately 2 s. The complete training for the
linear model required approximately 116 s. With the
trained model, the prediction time for the test samples was
less than 0.01 s. The most time-consuming process in this
study was the model validation process because all the
models were evaluated with the five-fold cross-validation
technique. The linear model, support vector regression
(SVR™), and deep neural network (DNN) required ~550 s,
~9 h, and ~2 h for the cross-validation, respectively.
Furthermore, to evaluate the model by modifying the
hyperparameters (such as the number of hidden neurons or
level of regularisation), the validation time for each model
was multiplied by the number of hyperparameter sets used.
However, since we found that the linear model performed
the best in this study, the actual model validation time was
relatively short.

Implementation details of machine learning models.
For multilayer metrology under normal conditions, we used
three different machine learning models: SVR, linear
regression”, and an artificial neural network (ANN**"). All
these models are regression models that predict continuous
values (layer thicknesses). For all spectral data, feature
standardisation is applied; thus, each feature vector has
zero mean and unit variance. We compared the RMSE of
the validation set with various conditions for each model.
As shown in Fig. S7, when using the DNN model with a
large number of hidden neurons, the RMSE of the training
set converges to zero; however, the RMSE of the validation
set does not decrease on account of overfitting during
training. For the linear model, we applied L2
regularisation to avoid overfitting and used a conjugate
gradient function™ with 1,000 iterations to minimise cost
function J as follows:

1
T= 55|20 =+ A 5)

where N is the number of training samples; p; denotes the
predicted thickness; y; is the actual thickness; A represents
a parameter that controls the level of L2 regularisation, and
w is the weight vector. A step-by-step algorithm operation
process for the linear model is provided as a flow chart
shown in Fig. S9. For the SVR model, we used a radial
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basis function as the kernel function. Scikit-learn™ was
used for implementing the SVR with cost function J as
follows:

N 1
J=CY Lpi=y)+ 5w ©)

where C is a regularisation parameter. L, is an e-insensitive
loss function given by

0, iflpi—yil <&
|p: —yi| — &, otherwise

L. (pi—y) = { (M

Here, ¢ is the margin of tolerance, where no penalty is
given to errors. ANNs with different architectures were
implemented using Tensorflow”. For the ANN models,
batch normalisation™, a ReLU activation function™, and
dropout™ were applied. Batch normalisation and ReLU
were applied to all hidden layers, while dropout was
applied to the last hidden layer. A linear activation function
was used for the output layer. As the best result for each
ANN model, for the two-layer neural network (NN), eight
neurons were used for the hidden layer without a dropout
layer. For the three-layer DNN, 512 neurons were used for
each hidden layer with a dropout layer (50% drop
probability). For the four-layer DNN, 512 neurons were
used for each hidden layer with a dropout layer (50% drop
probability). The batch size was 128 in all cases. We used
the Adam optimiser’” with 10,000 epochs. It should be
noted that an epoch denotes one full training iteration for
each training data. The learning rate was 0.003.

Outlier detection methods To detect outliers, we used
simulated spectroscopic data for model training. The
matrix method” was used to obtain the theoretical values of
reflectance (see the ‘Theoretical model of spectroscopic
data’ section in ‘Methods’). To simulate the spectroscopic
data, the thickness of each layer and the refractive index of
each medium were required. We used the measured
refractive index obtained by a single layer measurement of
each material with an ellipsometer (Fig. S8) as the
refractive index of each material (oxide, nitride, and Si
substrate) in the modelling. Because the outlier detection
method focuses on detecting relatively large thickness
changes, precise optical modelling by accurate refractive
index characterisation was not required. We assumed that
all the oxide and nitride layers shared the same oxide and
nitride refractive indices, respectively. In addition, we
assumed that there were no surface roughness or interface
layers in the multilayer structures, which was also
confirmed by the TEM measurement results.

Instead of using one model to predict the thickness of all
layers, multiple models (i.e. one model per layer) were
used to predict the multilayer thickness. The reasons were
(a) to avoid overfitting the model to a large amount of
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simulated data generated for potential outlier cases, and (b)
to magnify the sensitivity to the critical thickness changes
of a single layer.

To train and test the outlier detection models, we
prepared 45 normal samples and 3 outlier samples. As
shown in Fig. S3, the 45 normal samples were first
randomly split into 18 training, 10 validation, and 17 test
samples. The three outlier samples were randomly split
into one validation and two test samples. Eighteen normal
samples were increased to 1,800 augmented data by the
noise injection method, and 1,000 simulated data, which
were designed with a relatively large thickness variation in
each layer, were generated. When designing the simulated
outlier case data, the thickness of the outlier layer was
uniformly distributed within a £20% variation with respect
to the reference thickness, and the thicknesses of the other
layers were uniformly distributed within +4% of the
reference thickness. Here, the reference thickness denotes
the average thickness of each layer for the 18 normal
samples used for model training. A total of 2,800 training
data (1,800 for normal cases and 1,000 for outlier cases)
were used to train each outlier detection model. We used
the linear model (with the L2 regularisation parameter of
100) for the outlier detection model because we found that
the linear model performed the best in thickness
characterisation of the multilayer (Fig. S7).

To determine the best noise-injection condition for the
18 training samples, 10 normal samples and one outlier
sample were used as the validation set. We found that the
lowest RMSE of the validation set was 4.78 A when
applying lateral offset noise uniformly distributed from —4
to +4 nm without vertical noise injection. For model
testing, 17 normal samples and 2 outlier samples were put
into each model to predict the thickness of each layer.
Although a sample with a single-layer defect is used in this
study, we anticipated that defects in multiple layers could
be detected because our scheme is based on multiple
models (i.e. one model per layer) for outlier detection.
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