[1] Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793-818 (2003). doi:  10.1063/1.1524305
[2] O'Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D. & West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171-176 (2004). doi:  10.1016/j.canlet.2004.02.004
[3] Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458-1462 (2012). doi:  10.1126/science.1216210
[4] Xu, M. H. & Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006). doi:  10.1063/1.2195024
[5] Liu, Y. L. et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 25, 1353-1359 (2013). doi:  10.1002/adma.201204683
[6] Smith, A. M., Mancini, M. C. & Nie, S. M. Biomaging second window for in vivo imaging. Nat. Nanotechnol. 4, 710-711 (2009). doi:  10.1038/nnano.2009.326
[7] An, J., Shade, C. M., Chengelis-Czegan, D. A., Petoud, S. & Rosi, N. L. Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J. Am. Chem. Soc. 133, 1220-1223 (2011). doi:  10.1021/ja109103t
[8] Lyu, Y., Xie, C., Chechetka, S. A., Miyako, E. & Pu, K. Y. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 138, 9049-9052 (2016). doi:  10.1021/jacs.6b05192
[9] Roper, D. K., Ahn, W. & Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111, 3636-3641 (2007). doi:  10.1021/jp064341w
[10] Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543-557 (2009). doi:  10.1038/nmat2442
[11] Yang, X. C. et al. Drug delivery using nanoparticle-stabilized nanocapsules. Angew. Chem. Int. Ed. 50, 477-481 (2011). doi:  10.1002/anie.201005662
[12] Kuo, C. T. et al. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Nat. Commun. 7, 11468 (2016). doi:  10.1038/ncomms11468
[13] Sotiriou, G. A. et al. Photothermal killing of cancer cells by the controlled plasmonic coupling of silica-coated Au/Fe2O3 nanoaggregates. Adv. Funct. Mater. 24, 2818-2827 (2014). doi:  10.1002/adfm.201303416
[14] Maji, S. K. et al. Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Adv. Mater. 26, 5633-5638 (2014). doi:  10.1002/adma.201400831
[15] Dou, L. T., Liu, Y. S., Hong, Z. R., Li, G. & Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633-12665 (2015). doi:  10.1021/acs.chemrev.5b00165
[16] Meager, I. et al. Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. J. Am. Chem. Soc. 135, 11537-11540 (2013). doi:  10.1021/ja406934j
[17] Wu, C. F. & Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int Ed. 52, 3086-3109 (2013). doi:  10.1002/anie.201205133
[18] Wang, L. et al. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew. Chem. Int. Ed. 55, 12306-12310 (2016). doi:  10.1002/anie.201607018
[19] Jin, G. R. et al. Conjugated polymer nanodots as ultrastable long-term trackers to understand mesenchymal stem cell therapy in skin regeneration. Adv. Funct. Mater. 25, 4263-4273 (2015). doi:  10.1002/adfm.201501081
[20] Zhao, Q. et al. Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging. Chem. Sci. 6, 1825-1831 (2015). doi:  10.1039/C4SC03062A
[21] Chen, J. Q. et al. Single-layer MoS2 nanosheets with amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors. Adv. Funct. Mater. 26, 8715-8725 (2016). doi:  10.1002/adfm.201603758
[22] Pu, K. Y. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9, 233-239 (2014). doi:  10.1038/nnano.2013.302
[23] Zhang, J. J. et al. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv. Mater. 29, 1604764 (2017). doi:  10.1002/adma.201604764
[24] Jiang, Y. Y. & Pu, K. Y. Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticles. Small 13, 1700710 (2017). doi:  10.1002/smll.201700710
[25] Xie, C., Upputuri, P. K., Zhen, X., Pramanik, M. & Pu, K. Y. Self-quenched semiconducting polymer nanoparticles for amplified in vivo photoacoustic imaging. Biomaterials 119, 1-8 (2017). doi:  10.1016/j.biomaterials.2016.12.004
[26] Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538-544 (2005). doi:  10.1126/science.1104274
[27] Zhang, P. Y. et al. Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with two-photon luminescent ruthenium(Ⅱ) complexes: a way towards cancer therapy? Biomaterials 63, 102-104 (2015). doi:  10.1016/j.biomaterials.2015.06.012
[28] Yang, K. et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318-3323 (2010). doi:  10.1021/nl100996u
[29] Yang, K. et al. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33, 2206-2214 (2012). doi:  10.1016/j.biomaterials.2011.11.064
[30] Moon, H. K., Lee, S. H. & Choi, H. C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3, 3707-3713 (2009). doi:  10.1021/nn900904h
[31] Nie, S. M. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine 5, 523-528 (2010). doi:  10.2217/nnm.10.23
[32] Huang, X. L. et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7, 5684-5693 (2013). doi:  10.1021/nn401911k
[33] Baker, S. N. & Baker, G. A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726-6744 (2010). doi:  10.1002/anie.200906623
[34] Lim, S. Y., Shen, W. & Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362-381 (2015). doi:  10.1039/C4CS00269E
[35] Hola, K. et al. Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9, 590-603 (2014). doi:  10.1016/j.nantod.2014.09.004
[36] Miao, P. et al. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale 7, 1586-1595 (2015). doi:  10.1039/C4NR05712K
[37] Li, H. T., Kang, Z. H., Liu, Y. & Lee, S. T. Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230-24253 (2012). doi:  10.1039/c2jm34690g
[38] Zheng, X. T., Ananthanarayanan, A., Luo, K. Q. & Chen, P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620-1636 (2015). doi:  10.1002/smll.201402648
[39] Tian, Z. et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Opt. Mater. 5, 1700416 (2017). doi:  10.1002/adom.201700416
[40] Li, X. M., Zhang, S. L., Kulinich, S. A., Liu, Y. L. & Zeng, H. B. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 4, 4976 (2014). doi:  10.1038/srep04976
[41] Zhang, X. T. et al. Dual-encryption based on facilely synthesized supra-(carbon nanodots) with water-induced enhanced luminescence. RSC Adv. 6, 79620-79624 (2016). doi:  10.1039/C6RA11076B
[42] Ding, C. Q., Zhu, A. W. & Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20-30 (2014). doi:  10.1021/ar400023s
[43] Zhu, S. J. et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52, 3953-3957 (2013). doi:  10.1002/anie.201300519
[44] Lou, Q. et al. Water-triggered luminescent "Nano-bombs" based on supra-(carbon nanodots). Adv. Mater. 27, 1389-1394 (2015). doi:  10.1002/adma.201403635
[45] Qu, S. N., Wang, X. Y., Lu, Q. P., Liu, X. Y. & Wang, L. J. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Ed. 51, 12215-12218 (2012). doi:  10.1002/anie.201206791
[46] Li, X. M., Rui, M. C., Song, J. Z., Shen, Z. H. & Zeng, H. B. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater. 25, 4929-4947 (2015). doi:  10.1002/adfm.201501250
[47] Lu, S. Y. et al. Piezochromic carbon dots with two-photon fluorescence. Angew. Chem. Int. Ed. 56, 6187-6191 (2017). doi:  10.1002/anie.201700757
[48] Ge, J. C. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014). doi:  10.1038/ncomms5596
[49] Lee, C. et al. Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy. Theranostics 6, 2196-2208 (2016). doi:  10.7150/thno.16923
[50] Zheng, M. et al. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 9, 11455-11461 (2015). doi:  10.1021/acsnano.5b05575
[51] Miao, X. et al. Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics. ACS Appl. Mater. Interfaces 9, 18549-18556 (2017). doi:  10.1021/acsami.7b04514
[52] Qu, S. N. et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv. Mater. 28, 3516-3521 (2016). doi:  10.1002/adma.201504891
[53] Lu, S. Y. et al. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 29, 1603443 (2017). doi:  10.1002/adma.201603443
[54] Pan, L. L., Sun, S., Zhang, L., Jiang, K. & Lin, H. W. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 8, 17350-17356 (2016). doi:  10.1039/C6NR05878G
[55] Tang, L. B. et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 8, 6312-6320 (2014). doi:  10.1021/nn501796r
[56] Ge, J. C. et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 27, 4169-4177 (2015). doi:  10.1002/adma.201500323
[57] Li, D. et al. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light Sci. Appl. 5, e16120 (2016). doi:  10.1038/lsa.2016.120
[58] Lan, M. H. et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res. 10, 3113-3123 (2017). doi:  10.1007/s12274-017-1528-0
[59] Zheng, M. et al. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl. Mater. Interfaces 8, 23533-23541 (2016). doi:  10.1021/acsami.6b07453
[60] Yeh, T. F., Teng, C. Y., Chen, S. J. & Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 26, 3297-3303 (2014). doi:  10.1002/adma.201305299
[61] Qu, D., Zheng, M., Li, J., Xie, Z. G. & Sun, Z. C. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci. Appl. 4, e364 (2015). doi:  10.1038/lsa.2015.137
[62] Xu, Z. et al. Semiconducting photothermal nanoagonist for remote-controlled specific cancer therapy. Nano Lett. 18, 1498-1905 (2018). doi:  10.1021/acs.nanolett.7b05292
[63] Lyu, Y. et al. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 10, 4472-4481 (2016). doi:  10.1021/acsnano.6b00168
[64] Li, J. C., Rao, J. H. & Pu, K. Y. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155, 217-235 (2018). doi:  10.1016/j.biomaterials.2017.11.025
[65] Kobayashi, H., Watanabe, R. & Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects. What is the appropriate target? Theranostics 4, 81-89 (2014). doi:  10.7150/thno.7193