[1] Park, Y. et al. Scaling and reliability of NAND flash devices. Proceedings of 2014 IEEE International Reliability Physics Symposium. Waikoloa, HI, USA: IEEE, 2014, 2E-1.
[2] Li, Y. & Quader, K. N. NAND flash memory: challenges and opportunities. Computer 46, 23-29 (2013).
[3] Nitayama, A. & Aochi, H. Vertical 3D NAND flash memory technology. ECS Transactions 41, 15-25 (2011).
[4] Micheloni, R., Aritome, S. & Crippa, L. Array architectures for 3-D NAND flash memories. Proceedings of the IEEE 105, 1634-1649 (2017). doi:  10.1109/JPROC.2017.2697000
[5] Kim, H. et al. Evolution of NAND flash memory: from 2D to 3D as a storage market leader. Proceedings of 2017 IEEE International Memory Workshop (IMW). Monterey, CA, USA: IEEE, 2017.
[6] Park, K. T. et al. Three-dimensional 128 GB MLC vertical NAND flash memory with 24-WL stacked layers and 50 MB/s high-speed programming. IEEE Journal of Solid-State Circuits 50, 204-213 (2015). doi:  10.1109/JSSC.2014.2352293
[7] Maejima, H. et al. A 512Gb 3b/Cell 3D flash memory on a 96-word-line-layer technology. Proceedings of 2008 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, 2018, 336-337.
[8] Lee, S. et al. A 1Tb 4b/cell 64-stacked-WL 3D NAND flash memory with 12MB/s program throughput. Proceedings of 2008 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, 2018, 340-342.
[9] Kumar, R. & Tewari, D. Global 3D NAND Flash Memory Market to Reach $99, 769.0 Million by 2025 (2018). at https://www.alliedmarketresearch.com/press-release/3D-NAND-flash-memory-market.html.
[10] Tanaka, H. et al. Bit cost scalable technology with punch and plug process for ultra high density flash memory. Proceedings of 2007 IEEE Symposium on VLSI Technology. Kyoto, Japan: IEEE, 2007, 14-15.
[11] Parat, K. & Dennison, C. A floating gate based 3D NAND technology with CMOS under array. Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM). Washington, DC, USA: IEEE, 2015, 48-51.
[12] Whang, S. et al. Novel 3-dimensional dual control-gate with surrounding floating-gate (DC-SF) NAND flash cell for 1Tb File Storage Application. Proceedings of 2010 IEEE International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2010, 668-671.
[13] Jang, J. et al. Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory. Proceedings of 2009 Symposium on VLSI Technology. Honolulu, HI, USA: IEEE, 2009, 192-193.
[14] Sinha, A. K., Levinstein, H. J. & Smith, T. E. Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrates. Journal of Applied Physics 49, 2423-2426 (1978). doi:  10.1063/1.325084
[15] Singh, H. Overcoming challenges in 3D NAND volume manufacturing. Solid State Technology 60, 18-21 (2017).
[16] Miyaji, K. et al. Control gate length, spacing, channel hole diameter, and stacked layer number design for bit-cost scalable-type three-dimensional stackable NAND flash memory. Japanese Journal of Applied Physics 53, 024201 (2014).
[17] Orji, N. G. et al. Metrology for the next generation of semiconductor devices. Nature Electronics 1, 532-547 (2018). doi:  10.1038/s41928-018-0150-9
[18] Brown, K. A. et al. Machine learning in nanoscience: big data at small scales. Nano Letters 20, 2-10 (2020). doi:  10.1021/acs.nanolett.9b04090
[19] Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229-233 (2017). doi:  10.1038/nature23905
[20] Ohashi, T. et al. Precise measurement of thin-film thickness in 3D-NAND device with CD-SEM. Journal of Micro/Nanolithography. MEMS,and MOEMS 17, 024002 (2018).
[21] Abdulhalim, I. Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit. Applied Optics 46, 2219-2228 (2007). doi:  10.1364/AO.46.002219
[22] Abdulhalim, I. Spectroscopic interference microscopy technique for measurement of layer parameters. Measurement Science and Technology 12, 1996-2001 (2001). doi:  10.1088/0957-0233/12/11/332
[23] Likhachev, D. V. Efficient thin-film stack characterization using parametric sensitivity analysis for spectroscopic ellipsometry in semiconductor device fabrication. Thin Solid Films 589, 258-263 (2015). doi:  10.1016/j.tsf.2015.05.049
[24] Hilfiker, J. N. et al. Spectroscopic ellipsometry characterization of multilayer optical coatings. Surface and Coatings Technology 357, 114-121 (2019). doi:  10.1016/j.surfcoat.2018.10.003
[25] Hilfiker, J. N. et al. Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry. Thin Solid Films 516, 7979-7989 (2008). doi:  10.1016/j.tsf.2008.04.060
[26] Nazarov, A., Ney, M. & Abdulhalim, I. Parallel spectroscopic ellipsometry for ultra-fast thin film characterization. Optics Express 28, 9288-9309 (2020). doi:  10.1364/OE.28.009288
[27] McGahan, W. A., Johs, B. & Woollam J. A. Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films. Thin Solid Films 234, 443-446 (1993). doi:  10.1016/0040-6090(93)90303-7
[28] Polgár, O. et al. Comparison of algorithms used for evaluation of ellipsometric measurements random search, genetic algorithms, simulated annealing and hill climbing graph-searches. Surface Science 457, 157-177 (2000). doi:  10.1016/S0039-6028(00)00352-6
[29] Fried, M. & Masa, P. Backpropagation (neural) networks for fast pre‐evaluation of spectroscopic ellipsometric measurements. Journal of Applied Physics 75, 2194-2201 (1994). doi:  10.1063/1.356281
[30] Rédei, L. et al. A modified learning strategy for neural networks to support spectroscopic ellipsometric data evaluation. Thin Solid Films 313-314, 149-155 (1998). doi:  10.1016/S0040-6090(97)00802-X
[31] Battie, Y. et al. Demonstration of the feasibility of a complete ellipsometric characterization method based on an artificial neural network. Applied Optics 48, 5318-5323 (2009). doi:  10.1364/AO.48.005318
[32] Macleod, H. A. Thin-Film Optical Filters. (New York: Elsevier, 1969).
[33] Lissberger, P. H. Optical applications of dielectric thin films. Reports on Progress in Physics 33, 197-268 (1970). doi:  10.1088/0034-4885/33/1/305
[34] Bhattacharyya, D. et al. Spectroscopic ellipsometry of multilayer dielectric coatings. Vacuum 60, 419-424 (2001). doi:  10.1016/S0042-207X(00)00222-0
[35] Tikhonravov, A. V. et al. Optical characterization and reverse engineering based on multiangle spectroscopy. Applied Optics 51, 245-254 (2012). doi:  10.1364/AO.51.000245
[36] Pervak, V. et al. 1.5-octave chirped mirror for pulse compression down to sub-3 fs. Applied Physics B 87, 5-12 (2007). doi:  10.1007/s00340-006-2467-8
[37] Pervak, V. et al. Dispersive mirror technology for ultrafast lasers in the range 220-4500 nm. Advanced Optical Technologies 3, 55-63 (2014).
[38] Siqueira, J. R. Jr. et al. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosensors and Bioelectronics 25, 497-501 (2009). doi:  10.1016/j.bios.2009.07.007
[39] Ferreira, M. et al. Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosensors and Bioelectronics 19, 1611-1615 (2004). doi:  10.1016/j.bios.2003.12.025
[40] Morais, P. V. et al. Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices. Journal of Materials Science 52, 12314-12325 (2017). doi:  10.1007/s10853-017-1369-y
[41] Poddubny, A. et al. Hyperbolic metamaterials. Nature Photonics 7, 948-957 (2013). doi:  10.1038/nphoton.2013.243
[42] Maas, R., van de Groep, J. & Polman, A. Planar metal/dielectric single-periodic multilayer ultraviolet flat lens. Optica 3, 592-596 (2016). doi:  10.1364/OPTICA.3.000592
[43] Novak, R. et al. Sensitivity and generalization in neural networks: an empirical study (2018). at https://arxiv.org/abs/1802.08760.
[44] Jiang, Y. L. et al. A study of the effect of noise injection on the training of artificial neural networks. Proceedings of 2009 IEEE International Joint Conference on Neural Networks. Atlanta, GA, USA: IEEE, 2009, 1428-1432.
[45] Oviedo, F. et al. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. npj Computational Materials 5, 60 (2019). doi:  10.1038/s41524-019-0196-x
[46] Murphy, K. P. Machine Learning: A Probabilistic Perspective. (Cambridge: MIT Press, 2012).
[47] Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence. Montréal Québec, Canada: ACM, 1995, 1137-1143.
[48] Smola, A. J. & Scholkopf, B. A tutorial on support vector regression. Statistics and Computing 14, 199-222 (2004). doi:  10.1023/B:STCO.0000035301.49549.88
[49] Cheng, B. & Titterington, D. M. Neural networks: a review from a statistical perspective. Statistical Science 9, 2-30 (1994). doi:  10.1214/ss/1177010638
[50] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). doi:  10.1038/nature14539
[51] Le, Q. V. et al. On optimization methods for deep learning. Proceedings of the 28th International Conference on Machine Learning. Bellevue, Washington, USA: ACM, 2011, 265-272.
[52] Pedregosa, F. et al. Scikit-learn: machine learning in Python. The Journal of Machine Learning Research 12, 2825-2830 (2011).
[53] Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems (2015). at https: //arxiv.org/abs/1603.04467.
[54] Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning. Lille, France: ACM, 2015, 448-456.
[55] Glorot, X., Bordes, A. & Bengio. Y. Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA, 2011, 315-323.
[56] Srivastava, N. et al. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15, 1929-1958 (2014).
[57] Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations. San Diego, CA, USA, 2015.