[1] Ji, N. The practical and fundamental limits of optical imaging in mammalian brains. Neuron 83, 1242–1245 (2014). doi:  10.1016/j.neuron.2014.08.009
[2] Andersen, P., Morris, R., Amaral, D., Bliss, T. & O' Keefe, J. The Hippocampus Book. (Oxford University Press, Oxford, New York, 2007).
[3] Jones, E. G. The Thalamus. (Cambridge University Press, Cambridge, 2007).
[4] Misgeld, T. & Kerschensteiner, M. In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 7, 449–463 (2006). doi:  10.1038/nrn1905
[5] Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011). doi:  10.1364/OE.19.018871
[6] Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012). doi:  10.1038/ncomms2024
[7] Plöschner, M. & Čižmár, T. Compact multimode fiber beam-shaping system based on GPU accelerated digital holography. Opt. Lett. 40, 197–200 (2015). doi:  10.1364/OL.40.000197
[8] Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010). doi:  10.1038/nn.2648
[9] Szabo, V., Ventalon, C., De Sars, V., Bradley, J. & Emiliani, V. Spatially selective holographic Photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Neuron 84, 1157–1169 (2014). doi:  10.1016/j.neuron.2014.11.005
[10] Barretto, R. P. J. et al. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat. Med. 17, 223–228 (2011). doi:  10.1038/nm.2292
[11] Resendez, S. L. et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat. Protoc. 11, 566–597 (2016). doi:  10.1038/nprot.2016.021
[12] Bocarsly, M. E. et al. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed. Opt. Express 6, 4546–4556 (2015). doi:  10.1364/BOE.6.004546
[13] Xu, H. T., Pan, F., Yang, G. & Gan, W. B. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat. Neurosci. 10, 549–551 (2007). doi:  10.1038/nn1883
[14] Moshayedi, P. et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014). doi:  10.1016/j.biomaterials.2014.01.038
[15] Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010). doi:  10.1103/PhysRevLett.104.100601
[16] Mahalati, R. N., Gu, R. Y. & Kahn, J. M. Resolution limits for imaging through multi-mode fiber. Opt. Express 21, 1656–1668 (2013). doi:  10.1364/OE.21.001656
[17] Kim, G. et al. Deep-brain imaging via epi-fluorescence computational cannula microscopy. Sci. Rep. 7, 44791 (2017). doi:  10.1038/srep44791
[18] Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000). doi:  10.1016/S0896-6273(00)00084-2
[19] Crowe, S. E. & Ellis-Davies, G. C. R. Longitudinal in vivo two-photon fluorescence imaging. J. Comp. Neurol. 522, 1708–1727 (2014). doi:  10.1002/cne.23502
[20] Ohayon, S., Caravaca-Aguirre, A., Piestun, R. & DiCarlo, J. J. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express 9, 1492–1509 (2018). doi:  10.1364/BOE.9.001492
[21] Plöschner, M., Straka, B., Dholakia, K. & Čižmár, T. GPU accelerated toolbox for real-time beam-shaping in multimode fibres. Opt. Express 22, 2933–2947 (2014). doi:  10.1364/OE.22.002933
[22] Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733–1740 (2012). doi:  10.1364/OE.20.001733
[23] Mitchell, K. J., Turtaev, S., Padgett, M. J., Čižmár, T. & Phillips, D. B. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Opt. Express 24, 29269–29282 (2016). doi:  10.1364/OE.24.029269
[24] Turtaev, S. et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express 25, 29874–29884 (2017). doi:  10.1364/OE.25.029874
[25] Gigan, S. Optical microscopy aims deep. Nat. Photon 11, 14–16 (2017). doi:  10.1038/nphoton.2016.257
[26] Loterie, D. et al. Digital confocal microscopy through a multimode fiber. Opt. Express 23, 23845–23858 (2015). doi:  10.1364/OE.23.023845
[27] Morales-Delgado, E. E., Farahi, S., Papadopoulos, I. N., Psaltis, D. & Moser, C. Delivery of focused short pulses through a multimode fiber. Opt. Express 23, 9109–9120 (2015). doi:  10.1364/OE.23.009109
[28] Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017). doi:  10.1038/nrm.2017.71