[1] Von Neumann, J. & Wigner, E. On some peculiar discrete eigenvalues. Physikalische Z. 30, 467 (1929).
[2] Hsu, C. W. et al. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016). doi:  10.1038/natrevmats.2016.48
[3] Lyapina, A. A. et al. Bound states in the continuum in open acoustic resonators. J. Fluid Mech. 780, 370-387 (2015). doi:  10.1017/jfm.2015.480
[4] Linton, C. M. & McIver, P. Embedded trapped modes in water waves and acoustics. Wave Motion 45, 16-29 (2007). doi:  10.1016/j.wavemoti.2007.04.009
[5] Chen, Y. et al. Mechanical bound state in the continuum for optomechanical microresonators. N. J. Phys. 18, 063031 (2016). doi:  10.1088/1367-2630/18/6/063031
[6] Hein, S., Koch, W. & Nannen, L. Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems. J. Fluid Mech. 692, 257-287 (2012). doi:  10.1017/jfm.2011.509
[7] Xiao, Y. X. et al. Topological subspace-induced bound state in the continuum. Phys. Rev. Lett. 118, 166803 (2017). doi:  10.1103/PhysRevLett.118.166803
[8] Albo, A., Fekete, D. & Bahir, G. Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells. Phys. Rev. B 85, 115307 (2012). doi:  10.1103/PhysRevB.85.115307
[9] Álvarez, C. et al. Impact of electron-vibron interaction on the bound states in the continuum. Phys. Lett. A 379, 1062-1066 (2015). doi:  10.1016/j.physleta.2015.02.003
[10] Yan, J. X. & Fu, H. H. Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system. Phys. B: Condens. Matter 410, 197-200 (2013). doi:  10.1016/j.physb.2012.11.009
[11] Gong, W. J., Han, Y. & Wei, G. Z. Antiresonance and bound states in the continuum in electron transport through parallel-coupled quantum-dot structures. J. Phys.: Condens. Matter 21, 175801 (2009). doi:  10.1088/0953-8984/21/17/175801
[12] Ladrón De Guevara, M. L. & Orellana, P. A. Electronic transport through a parallel-coupled triple quantum dot molecule: Fano resonances and bound states in the continuum. Phys. Rev. B 73, 205303 (2006). doi:  10.1103/PhysRevB.73.205303
[13] Capasso, F. et al. Observation of an electronic bound state above a potential well. Nature 358, 565-567 (1992). doi:  10.1038/358565a0
[14] Gomis-Bresco, J., Artigas, D. & Torner, L. Anisotropy-induced photonic bound states in the continuum. Nat. Photonics 11, 232-236 (2017). doi:  10.1038/nphoton.2017.31
[15] Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196-199 (2017). doi:  10.1038/nature20799
[16] Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188-191 (2013). doi:  10.1038/nature12289
[17] Zou, C. L. et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photonics Rev. 9, 114-119 (2015). doi:  10.1002/lpor.201400178
[18] Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 100, 183902 (2008). doi:  10.1103/PhysRevLett.100.183902
[19] Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011). doi:  10.1103/PhysRevLett.107.183901
[20] Bulgakov, E. N. & Maksimov, D. N. Light guiding above the light line in arrays of dielectric nanospheres. Opt. Lett. 41, 3888-3891 (2016). doi:  10.1364/OL.41.003888
[21] Longhi, S. Optical analog of population trapping in the continuum: classical and quantum interference effects. Phys. Rev. A 79, 023811 (2009). doi:  10.1103/PhysRevA.79.023811
[22] Bulgakov, E. N. & Maksimov, D. N. Topological bound states in the continuum in arrays of dielectric spheres. Phys. Rev. Lett. 118, 267401 (2017). doi:  10.1103/PhysRevLett.118.267401
[23] Zhen, B. et al. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014). doi:  10.1103/PhysRevLett.113.257401
[24] Weimann, S. et al. Compact surface Fano states embedded in the continuum of waveguide arrays. Phys. Rev. Lett. 111, 240403 (2013). doi:  10.1103/PhysRevLett.111.240403
[25] Monticone, F. & Alù, A. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett. 112, 213903 (2014). doi:  10.1103/PhysRevLett.112.213903
[26] Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017). doi:  10.1103/PhysRevLett.119.243901
[27] Liu, Y. H., Zhou, W. D. & Sun, Y. Z. Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs. Sensors 17, 1861 (2017). doi:  10.3390/s17081861
[28] Zhen, B. et al. Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals. Proc. Natl Acad. Sci. USA 110, 13711-13716 (2013). doi:  10.1073/pnas.1311866110
[29] Foley, J. M., Young, S. M. & Phillips, J. D. Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating. Phys. Rev. B 89, 165111 (2014). doi:  10.1103/PhysRevB.89.165111
[30] Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photonics 12, 91-97 (2018). doi:  10.1038/s41566-017-0075-2
[31] Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 7, 509-514 (2012). doi:  10.1038/nnano.2012.97
[32] Beugnot, J. C. et al. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nat. Commun. 5, 5242 (2014). doi:  10.1038/ncomms6242
[33] Chan, E. H. W. & Minasian, R. A. All-optical frequency shifter based on stimulated Brillouin scattering in an optical fiber. IEEE Photonics J. 6, 6600210 (2014).
[34] Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photonics 5, 549-553 (2011). doi:  10.1038/nphoton.2011.180
[35] Santagiustina, M. et al. All-optical signal processing using dynamic Brillouin gratings. Sci. Rep. 3, 1594 (2013). doi:  10.1038/srep01594
[36] Li, H. et al. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica 2, 826-831 (2015). doi:  10.1364/OPTICA.2.000826
[37] Tadesse, S. A. & Li, M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun. 5, 5402 (2014). doi:  10.1038/ncomms6402
[38] Bochmann, J. et al. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712-716 (2013). doi:  10.1038/nphys2748
[39] Silveirinha, M. G. Trapping light in open plasmonic nanostructures. Phys. Rev. A 89, 023813 (2014). doi:  10.1103/PhysRevA.89.023813
[40] Yu, Z. J., Cui, H. R. & Sun, X. K. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett. 42, 3093-3096 (2017). doi:  10.1364/OL.42.003093