[1] Völkel, R., Eisner, M. & Weible, K. J. Miniaturized imaging systems. Microelectron. Eng. 6768, 461–472 (2003). doi:  10.1016/S0167-9317(03)00102-3
[2] Duparré, J. W. & Wippermann, F. C. Micro-optical artificial compound eyes. Bioinspir. Biomim. 1, R1–R16 (2006). doi:  10.1088/1748-3182/1/1/R01
[3] Stavenga, D. G. & Hardie, R. C. Facets of Vision. (Springer-Verlag, Berlin, Heidelberg, 1989).
[4] Land, M. F. & Nilsson, D. E. Animal Eyes. 2nd edn, (Oxford University Press, Oxford, 2012).
[5] Buschbeck, E., Ehmer, B. & Hoy, R. Chunk versus point sampling: visual imaging in a small insect. Science 286, 1178–1180 (1999). doi:  10.1126/science.286.5442.1178
[6] Buschbeck, E. K., Ehmer, B. & Hoy, R. R. The unusual visual system of the Strepsiptera: external eye and neuropils. J. Comp. Physiol. A. 189, 617–630 (2003). doi:  10.1007/s00359-003-0443-x
[7] Maksimovic, S., Layne, J. E. & Buschbeck, E. K. Behavioral evidence for within-eyelet resolution in twisted-winged insects (Strepsiptera). J. Exp. Biol. 210, 2819–2828 (2007). doi:  10.1242/jeb.004697
[8] Duparré, J., Dannberg, P., Schreiber, P., Bräuer, A. & Tünnermann, A. Thin compound-eye camera. Appl. Opt. 44, 2949–2956 (2005). doi:  10.1364/AO.44.002949
[9] Stollberg, K. et al. The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects. Opt. Express 17, 15747–15759 (2009). doi:  10.1364/OE.17.015747
[10] Brückner, A. et al. Thin wafer-level camera lenses inspired by insect compound eyes. Opt. Express 18, 24379–24394 (2010). doi:  10.1364/OE.18.024379
[11] Meyer, J. et al. Optical cluster eye fabricated on wafer-level. Opt. Express 19, 17506–17519 (2011). doi:  10.1364/OE.19.017506
[12] Mendelowitz, S., Klapp, I. & Mendlovic, D. Design of an image restoration algorithm for the TOMBO imaging system. J. Opt. Soc. Am. A. 30, 1193–1204 (2013). doi:  10.1364/JOSAA.30.001193
[13] Jeong, K. H., Kim, J. & Lee, L. P. Biologically inspired artificial compound eyes. Science 312, 557–561 (2006). doi:  10.1126/science.1123053
[14] Qu, P. B. et al. A simple route to fabricate artificial compound eye structures. Opt. Express 20, 5775–5782 (2012). doi:  10.1364/OE.20.005775
[15] Zhang, H. et al. Development of a low cost high precision three-layer 3D artificial compound eye. Opt. Express 21, 22232–22245 (2013). doi:  10.1364/OE.21.022232
[16] Wei, K., Zeng, H. S. & Zhao, Y. Insect-Human Hybrid Eye (IHHE): an adaptive optofluidic lens combining the structural characteristics of insect and human eyes. Lab. Chip. 14, 3594–3602 (2014). doi:  10.1039/C4LC00363B
[17] Druart, G. et al. Demonstration of an infrared microcamera inspired by Xenos peckii vision. Appl. Opt. 48, 3368–3374 (2009). doi:  10.1364/AO.48.003368
[18] Li, L. & Yi, A. Y. Development of a 3D artificial compound eye. Opt. Express 18, 18125–18137 (2010). doi:  10.1364/OE.18.018125
[19] Li, L. & Yi, A. Y. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera. Appl. Opt. 51, 1843–1852 (2012). doi:  10.1364/AO.51.001843
[20] Dunkel, J., Wippermann, F., Reimann, A., Brückner, A. & Bräuer, A. Fabrication of microoptical freeform arrays on wafer level for imaging applications. Opt. Express 23, 31915–31925 (2015). doi:  10.1364/OE.23.031915
[21] Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). doi:  10.1038/nature12083
[22] Floreano, D. et al. Miniature curved artificial compound eyes. Proc. Natl Acad. Sci. USA 110, 9267–9272 (2013). doi:  10.1073/pnas.1219068110
[23] Venkataraman, K. et al. PiCam: an ultra-thin high performance monolithic camera array. ACM Trans. Graph 32, 166 (2013). doi:  10.1145/2508363.2508390
[24] Leitel R., Dannberg P., Brückner A., Bräuer A. SPIE Optical Systems Design. 81670P-81670P-81679 (International Society for Optics and Photonics).
[25] O'Shea, M. & Adams, M. E. Pentapeptide (proctolin) associated with an identified neuron. Science 213, 567–569 (1981). doi:  10.1126/science.6113690
[26] Wilson, M. The functional organisation of locust ocelli. J. Comp. Physiol. 124, 297–316 (1978). doi:  10.1007/BF00661380
[27] Farsiu, S., Robinson, M. D., Elad, M. & Milanfar, P. Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13, 1327–1344 (2004). doi:  10.1109/TIP.2004.834669