[1] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308-312 (2015). doi:  10.1038/nnano.2015.2
[2] Khorasaninejad, M., Ambrosio, A., Kanhaiya, P. & Capasso, F. Broadband and chiral binary dielectric meta-holograms. Sci. Adv. 2, e1501258 (2016). doi:  10.1126/sciadv.1501258
[3] Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473-10478 (2016). doi:  10.1073/pnas.1611740113
[4] Ni, X. J., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi:  10.1038/ncomms3807
[5] Wang, L. et al. Grayscale transparent metasurface holograms. Optica 3, 1504-1505 (2016). doi:  10.1364/OPTICA.3.001504
[6] Lee, G. Y. et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237-4245 (2018). doi:  10.1039/C7NR07154J
[7] Xiao, S. Y., Zhong, F., Liu, H., Zhu, S. N. & Li, J. Flexible coherent control of plasmonic spin-hall effect. Nat. Commun. 6, 8360 (2015). doi:  10.1038/ncomms9360
[8] Xu, Q. et al. Polarization-controlled surface plasmon holography. Laser Photonics Rev. 11, 1600212 (2017). doi:  10.1002/lpor.201600212
[9] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi:  10.1038/ncomms3808
[10] Zhang, C. M. et al. Multichannel metasurface for simultaneous control of holograms and twisted light beams. ACS Photonics 4, 1906-1912 (2017). doi:  10.1021/acsphotonics.7b00587
[11] Yue, F. Y. et al. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv. Mater. 29, 1603838 (2017). doi:  10.1002/adma.201603838
[12] Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi:  10.1126/science.1232009
[13] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139-150 (2014). doi:  10.1038/nmat3839
[14] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi:  10.1126/science.1210713
[15] Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23-36 (2016). doi:  10.1038/nnano.2015.304
[16] Lin, D. M., Fan, P. Y., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298-302 (2014). doi:  10.1126/science.1253213
[17] Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk'yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). doi:  10.1126/science.aag2472
[18] Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917-924 (2012). doi:  10.1038/nmat3431
[19] Genevet, P., Lin, J., Kats, M. A. & Capasso, F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun. 3, 1278 (2012). doi:  10.1038/ncomms2293
[20] Lin, J., Genevet, P., Kats, M. A., Antoniou, N. & Capasso, F. Nanostructured holograms for broadband manipulation of vector beams. Nano. Lett. 13, 4269-4274 (2013). doi:  10.1021/nl402039y
[21] Epstein, I., Lilach, Y. & Arie, A. Shaping plasmonic light beams with near-field plasmonic holograms. J. Opt. Soc. Am. B 31, 1642-1647 (2014). doi:  10.1364/JOSAB.31.001642
[22] Liu, H. C. et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram. Sci. Adv. 3, e1701477 (2017). doi:  10.1126/sciadv.1701477
[23] Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi:  10.1038/161777a0
[24] Leith, E. N. & Upatnieks, J. Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123-1130 (1962). doi:  10.1364/JOSA.52.001123
[25] Genevet, P. & Capasso, F. Holographic optical metasurfaces: a review of current progress. Rep. Prog. Phys. 78, 024401 (2015). doi:  10.1088/0034-4885/78/2/024401
[26] Huang, L. L., Zhang, S. & Zentgraf, T. Metasurface holography: from fundamentals to applications. Nanophotonics 7, 1169-1190 (2018). doi:  10.1515/nanoph-2017-0118
[27] Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano. Lett. 16, 5235-5240 (2016). doi:  10.1021/acs.nanolett.6b02326
[28] Wang, B. et al. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica 4, 1368-1371 (2017). doi:  10.1364/OPTICA.4.001368
[29] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano. Lett. 15, 3122-3127 (2015). doi:  10.1021/acs.nanolett.5b00184
[30] Montelongo, Y., Tenorio-Pearl, J. O., Milne, W. I. & Wilkinson, T. D. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano. Lett. 14, 294-298 (2014). doi:  10.1021/nl4039967
[31] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015). doi:  10.1038/ncomms9241
[32] Mueller, J. P. B., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi:  10.1103/PhysRevLett.118.113901
[33] Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937-943 (2015). doi:  10.1038/nnano.2015.186
[34] Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano. Lett. 14, 225-230 (2014). doi:  10.1021/nl403811d
[35] Huang, L. L. et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv. Mater. 27, 6444-6449 (2015). doi:  10.1002/adma.201502541
[36] Ye, W. M. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 7, 11930 (2016). doi:  10.1038/ncomms11930
[37] Wei, Q. S., Huang, L. L., Li, X. W., Liu, J. & Wang, Y. T. Broadband multiplane holography based on plasmonic metasurface. Adv. Opt. Mater. 5, 1700434 (2017). doi:  10.1002/adom.201700434