[1] Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555–1567 (1958). doi:  10.1103/PhysRev.112.1555
[2] Agranovič, V. M. Dispersion of electromagnetic waves in crystals. Ž. Èksper Teor. Fiz. 37, 307–441 (1960).
[3] Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992). doi:  10.1103/PhysRevLett.69.3314
[4] Shelykh, I. A., Kavokin, A. V., Rubo, Y. G., Liew, T. C. H. & Malpuech, G. Polariton polarization-sensitive phenomena in planar semiconductor microcavities. Semicond. Sci. Technol. 25, 013001 (2010). doi:  10.1088/0268-1242/25/1/013001
[5] Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013). doi:  10.1103/RevModPhys.85.299
[6] Kasprzak, J. et al. Bose-einstein condensation of exciton polaritons. Nature 443, 409–414 (2006). doi:  10.1038/nature05131
[7] Kasprzak, J., Solnyshkov, D. D., André, R., Dang, L. S. & Malpuech, G. Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes. Phys. Rev. Lett. 101, 146404 (2008). doi:  10.1103/PhysRevLett.101.146404
[8] Sun, Y. B. et al. Bose-Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett. 118, 016602 (2017). doi:  10.1103/PhysRevLett.118.016602
[9] Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009). doi:  10.1038/nphys1364
[10] Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016). doi:  10.1038/nmat4668
[11] Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 4, 706–710 (2008). doi:  10.1038/nphys1051
[12] Hivet, R. et al. Half-solitons in a polariton quantum fluid behave like magnetic monopoles. Nat. Phys. 8, 724–728 (2012). doi:  10.1038/nphys2406
[13] Sala, V. G. et al. Spin-orbit coupling for photons and polaritons in microstructures. Phys. Rev. X 5, 011034 (2015).
[14] Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007). doi:  10.1038/nature06334
[15] Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014). doi:  10.1103/PhysRevLett.112.116402
[16] Kim, N. Y. et al. f-band condensates in exciton-polariton lattice systems. Phys. Rev. B 89, 085306 (2014). doi:  10.1103/PhysRevB.89.085306
[17] Whittaker, C. E. et al. Exciton polaritons in a two-dimensional lieb lattice with spin-orbit coupling. Phys. Rev. Lett. 120, 097401 (2018). doi:  10.1103/PhysRevLett.120.097401
[18] Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton Z topological insulator. Phys. Rev. Lett. 114, 116401 (2015). doi:  10.1103/PhysRevLett.114.116401
[19] Solnyshkov, D. D., Nalitov, A. V. & Malpuech, G. Kibble-zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars. Phys. Rev. Lett. 116, 046402 (2016). doi:  10.1103/PhysRevLett.116.046402
[20] St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651–656 (2017). doi:  10.1038/s41566-017-0006-2
[21] Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017). doi:  10.1038/nmat4971
[22] Imamoğlu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A. 53, 4250–4253 (1996). doi:  10.1103/PhysRevA.53.4250
[23] Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007). doi:  10.1103/PhysRevLett.98.126405
[24] Christmann, G., Butté, R., Feltin, E., Carlin, J. F. & Grandjean, N. Room temperature polariton lasing in a GaN-AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 51102 (2008). doi:  10.1063/1.2966369
[25] Bhattacharya, P. et al. Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014). doi:  10.1103/PhysRevLett.112.236802
[26] Li, F. et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett. 110, 196406 (2013). doi:  10.1103/PhysRevLett.110.196406
[27] Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics 4, 371–375 (2010). doi:  10.1038/nphoton.2010.86
[28] Dietrich, C. P. et al. An exciton-polariton laser based on biologically produced fluorescent protein. Sci. Adv. 2, e1600666 (2016). doi:  10.1126/sciadv.1600666
[29] Liscidini, M., Gerace, D., Sanvitto, D. & Bajoni, D. Guided Bloch surface wave polaritons. Appl. Phys. Lett. 98, 121118 (2011). doi:  10.1063/1.3571285
[30] Pirotta, S. et al. Strong coupling between excitons in organic semiconductors and Bloch surface waves. Appl. Phys. Lett. 104, 051111 (2014). doi:  10.1063/1.4863853
[31] Lerario, G. et al. High-speed flow of interacting organic polaritons. Light Sci. Appl. 6, e16212 (2017). doi:  10.1038/lsa.2016.212
[32] Solnyshkov, D. D., Terças, H. & Malpuech, G. Optical amplifier based on guided polaritons in GaN and ZnO. Appl. Phys. Lett. 105, 231102 (2014). doi:  10.1063/1.4903497
[33] Walker, P. M. et al. Exciton polaritons in semiconductor waveguides. Appl. Phys. Lett. 102, 012109 (2013). doi:  10.1063/1.4773590
[34] Rosenberg, I., Mazuz-Harpaz, Y., Rapaport, R., West, K. & Pfeiffer, L. Electrically controlled mutual interactions of flying waveguide dipolaritons. Phys. Rev. B 93, 195151 (2016). doi:  10.1103/PhysRevB.93.195151
[35] Ellenbogen, T. & Crozier, K. B. Exciton-polariton emission from organic semiconductor optical waveguides. Phys. Rev. B 84, 161304 (2011). doi:  10.1103/PhysRevB.84.161304
[36] Ciers, J. et al. Propagating polaritons in Ⅲ-nitride slab waveguides. Phys. Rev. Appl. 7, 034019 (2017). doi:  10.1103/PhysRevApplied.7.034019
[37] Hu, F. et al. Imaging exciton-polariton transport in MoSe2 waveguides. Nat. Photonics 11, 356–360 (2017). doi:  10.1038/nphoton.2017.65
[38] Walker, P. M. et al. Ultra-low-power hybrid lightmatter solitons. Nat. Commun. 6, 8317 (2015). doi:  10.1038/ncomms9317
[39] Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017). doi:  10.1126/science.aao4551
[40] Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018). doi:  10.1126/science.aar4005
[41] Zuniga-Perez, J. et al. Homoepitaxial nonpolar (10-10) ZnO/ZnMgO monolithic microcavities: towards reduced photonic disorder. Appl. Phys. Lett. 108, 251904 (2016). doi:  10.1063/1.4954796
[42] Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001). doi:  10.1126/science.1060367
[43] Zamfirescu, M., Kavokin, A., Gil, B., Malpuech, G. & Kaliteevski, M. ZnO as a material mostly adapted for the realization of room-temperature polariton lasers. Phys. Rev. B 65, 161205 (2002). doi:  10.1103/PhysRevB.65.161205
[44] Chu, S., Olmedo, M., Yang, Z., Kong, J. Y. & Liu, J. L. Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 93, 181106 (2008). doi:  10.1063/1.3012579
[45] Vanmaekelbergh, D. & Van Vugt, L. K. ZnO nanowire lasers. Nanoscale 3, 2783–2800 (2011). doi:  10.1039/c1nr00013f
[46] Versteegh, M. A. M., Vanmaekelbergh, D. & Dijkhuis, J. I. Room-temperature laser emission of ZnO nanowires explained by many-body theory. Phys. Rev. Lett. 108, 157402 (2012). doi:  10.1103/PhysRevLett.108.157402
[47] Levrat, J. et al. Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory. Phys. Rev. B 81, 125305 (2010). doi:  10.1103/PhysRevB.81.125305
[48] Jamadi, O. et al. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO. Phys. Rev. B 93, 115205 (2016). doi:  10.1103/PhysRevB.93.115205
[49] Haug, H. & Grob, K. Exciton laser theory. Phys. Lett. A 26, 41–42 (1967). doi:  10.1016/0375-9601(67)90548-8
[50] Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013). doi:  10.1038/nature12036