[1] Spitz, E. & Werts, A. Transmission des images à travers une fibre optique. Comptes Rendus Hebd. Des. Seances De. L Acad. Des. Sci. Ser. B 264, 1015 (1967).
[2] Yariv, A. On transmission and recovery of three-dimensional image information in optical waveguides. J. Opt. Soc. Am. 66, 301–306 (1976). doi:  10.1364/JOSA.66.000301
[3] Gover, A., Lee, C. P. & Yariv, A. Direct transmission of pictorial information in multimode optical fibers. J. Opt. Soc. Am. 66, 306–311 (1976). doi:  10.1364/JOSA.66.000306
[4] Dunning, G. J. & Lind, R. C. Demonstration of image transmission through fibers by optical phase conjugation. Opt. Lett. 7, 558–560 (1982). doi:  10.1364/OL.7.000558
[5] Friesem, A. A., Levy, U. & Silberberg, Y. Parallel transmission of images through single optical fibers. Proc. IEEE 71, 208–221 (1983). doi:  10.1109/PROC.1983.12560
[6] Di Leonardo, R. & Bianchi, S. Hologram transmission through multi-mode optical fibers. Opt. Express 19, 247–254 (2011). doi:  10.1364/OE.19.000247
[7] Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: Complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011). doi:  10.1364/OE.19.018871
[8] Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012). doi:  10.1038/ncomms2024
[9] Bianchi, S. & Di Leonardo, R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab. Chip. 12, 635–639 (2012). doi:  10.1039/C1LC20719A
[10] Andresen, E. R., Bouwmans, G., Monneret, S. & Rigneault, H. Toward endoscopes with no distal optics: Video-rate scanning microscopy through a fiber bundle. Opt. Lett. 38, 609–611 (2013). doi:  10.1364/OL.38.000609
[11] Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012). doi:  10.1364/OE.20.010583
[12] Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express 4, 260–270 (2013). doi:  10.1364/BOE.4.000260
[13] Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012). doi:  10.1103/PhysRevLett.109.203901
[14] Caravaca-Aguirre, A. M., Niv, E., Conkey, D. B. & Piestun, R. Real-time resilient focusing through a bending multimode fiber. Opt. Express 21, 12881–12887 (2013). doi:  10.1364/OE.21.012881
[15] Gu, R. Y., Mahalati, R. N. & Kahn, J. M. Design of flexible multi-mode fiber endoscope. Opt. Express 23, 26905–26918 (2015). doi:  10.1364/OE.23.026905
[16] Loterie, D. et al. Digital confocal microscopy through a multimode fiber. Opt. Express 23, 23845–23858 (2015). doi:  10.1364/OE.23.023845
[17] Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nat. Commun. 1, 81 (2010). doi:  10.1038/ncomms1078
[18] N'gom, M. et al. Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method. Sci. Rep. 7, 2518 (2017). doi:  10.1038/s41598-017-02716-x
[19] N'Gom, M., Norris, T. B., Michielssen, E. & Nadakuditi, R. R. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system. Opt. Lett. 43, 419–422 (2018). doi:  10.1364/OL.43.000419
[20] Aisawa, S., Noguchi, K. & Matsumoto, T. Remote image classification through multimode optical fiber using a neural network. Opt. Lett. 16, 645–647 (1991). doi:  10.1364/OL.16.000645
[21] Matsumoto, T., Koga, M., Noguchi, K., Aizawa, S. Proposal for neural-network applications to fiber-optic transmission. In Proc. of 1990 IJCNN International Joint Conference on Neural Networks; (IEEE, San Diego, CA, USA, 1990).
[22] Marusarz, R. K. & Sayeh, M. R. Neural network-based multimode fiber-optic information transmission. Appl. Opt. 40, 219–227 (2001). doi:  10.1364/AO.40.000219
[23] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
[24] McCann, M. T., Jin, K. H. & Unser, M. Convolutional neural networks for inverse problems in imaging: A review. IEEE Signal Process Mag. 34, 85–95 (2017). doi:  10.1109/MSP.2017.2739299
[25] Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437–1443 (2017). doi:  10.1364/OPTICA.4.001437
[26] Sinha, A., Lee, J., Li, S. & Barbastathis, G. Lensless computational imaging through deep learning. Optica 4, 1117–1125 (2017). doi:  10.1364/OPTICA.4.001117
[27] Rivenson, Y., Zhang, Y. B., Günaydın, H., Teng, D. & Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light.: Sci. Appl. 7, 17141 (2018). doi:  10.1038/lsa.2017.141
[28] Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv Prepr. arXiv 1409, 1556 (2014).
[29] He, K. M., Zhang, X. Y., Ren, S. Q., Sun, J. Deep residual learning for image recognition. In Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition; 770–778 (IEEE: Las Vegas, NV, USA, 2016).
[30] Xie, S. N., Girshick, R., Dollár, P., Tu, Z. W., He, K. M. Aggregated residual transformations for deep neural networks. In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 5987–5995 (IEEE: Honolulu, Hawaii, USA, 2017).
[31] He, K., Zhang, X., Ren, S., Sun, J. Identity mappings in deep residual networks. In European Conference on Computer Vision (ed. Leibe, B., Matas, J., Sebe N., Welling, M.) 630–645 (Springer, Cham, 2016).
[32] Cohen, G., Afshar, S., Tapson, J., van Schaik, A. EMNIST: An extension of MNIST to handwritten letters. Preprint at https://arxiv.org/abs/1702.05373 (2017).
[33] Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics.. (Wiley, New York, 1991).
[34] Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photonics 9, 529–535 (2015). doi:  10.1038/nphoton.2015.112
[35] Krizhevsky, A., Sutskever, I., Hinton, G. E. ImageNet classification with deep convolutional neural networks. in Proceedings of the 25th International Conference on Neural Information Processing Systems; 3–6 December 2012 1097–1105 (Curran Associates Inc.: Lake Tahoe, Nevada, 2012).
[36] Graham, B. Fractional max-pooling. Preprint at https://arxiv.org/abs/1412.6071 (2014).
[37] Kingma, D. P., Ba, J. Adam: A method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 2014.