[1] Cooper, M. A. Optical biosensors in drug discovery. Nat. Rev. Drug. Discov. 1, 515–528 (2002). doi:  10.1038/nrd838
[2] Cetin, A. E. et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci. Appl. 3, e122 (2014). doi:  10.1038/lsa.2014.3
[3] Brolo, A. G. Plasmonics for future biosensors. Nat. Photonics 6, 709–713 (2012). doi:  10.1038/nphoton.2012.266
[4] Etezadi, D. et al. Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light Sci. Appl. 6, e17029 (2017). doi:  10.1038/lsa.2017.29
[5] Laing, S., Jamieson, L. E., Faulds, K. & Graham, D. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat. Rev. Chem. 1, 0060 (2017). doi:  10.1038/s41570-017-0060
[6] Cao, C. et al. Metamaterials-based label-free nanosensor for conformation and affinity biosensing. ACS Nano 7, 7583–7591 (2013). doi:  10.1021/nn401645t
[7] Li, Y. L. et al. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano. Lett. 14, 1573–1577 (2014). doi:  10.1021/nl404824w
[8] Wu, C. H. et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2012). doi:  10.1038/nmat3161
[9] Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008). doi:  10.1038/nmat2162
[10] Leung, A., Shankar, P. M. & Mutharasan, R. A review of fiber-optic biosensors. Sens. Actuat B Chem. 125, 688–703 (2007). doi:  10.1016/j.snb.2007.03.010
[11] Duan, X. X. et al. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat. Nanotechnol. 7, 401–407 (2012). doi:  10.1038/nnano.2012.82
[12] Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009). doi:  10.1038/nmat2546
[13] Henry, A. I., Sharma, B., Cardinal, M. F., Kurouski, D. & Van Duyne, R. P. Surface-enhanced raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging. Anal. Chem. 88, 6638–6647 (2016). doi:  10.1021/acs.analchem.6b01597
[14] Iverson, N. M. et al. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8, 873–880 (2013). doi:  10.1038/nnano.2013.222
[15] Xu, S. C. et al. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat. Commun. 8, 14902 (2017). doi:  10.1038/ncomms14902
[16] Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016). doi:  10.1038/nnano.2016.38
[17] Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). doi:  10.1038/nature16521
[18] Wang, C. et al. High-kappa solid-gate transistor configured graphene biosensor with fully integrated structure and enhanced sensitivity. Adv. Funct. Mater. 26, 7668–7678 (2016). doi:  10.1002/adfm.201602960
[19] Fu, W. Y. et al. Graphene transistors are insensitive to pH changes in solution. Nano. Lett. 11, 3597–3600 (2011). doi:  10.1021/nl201332c
[20] Gao, N. et al. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc.. Natl. Acad. Sci. U. S. A. 113, 14633–14638 (2016). doi:  10.1073/pnas.1625010114
[21] Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). doi:  10.1126/science.1244358
[22] Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008). doi:  10.1126/science.1152793
[23] Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013). doi:  10.1038/nnano.2013.100
[24] Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011). doi:  10.1038/nature10067
[25] Phare, C. T., Lee, Y. H. D., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 9, 511–514 (2015). doi:  10.1038/nphoton.2015.122
[26] Yao, Y. et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano. Lett. 13, 1257–1264 (2013). doi:  10.1021/nl3047943
[27] Yan, H. G. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 7, 394–399 (2013). doi:  10.1038/nphoton.2013.57
[28] Dabidian, N. et al. Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces. ACS Photonics 2, 216–227 (2015). doi:  10.1021/ph5003279
[29] Farmer, D. B., Avouris, P., Li, Y. L., Heinz, T. F. & Han, S. J. Ultrasensitive plasmonic detection of molecules with graphene. ACS Photonics 3, 553–557 (2016). doi:  10.1021/acsphotonics.6b00143
[30] Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015). doi:  10.1126/science.aab2051
[31] Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016). doi:  10.1038/ncomms12334
[32] Huck, C. et al. Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 8, 4908–4914 (2014). doi:  10.1021/nn500903v
[33] Limaj, O. et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano. Lett. 16, 1502–1508 (2016). doi:  10.1021/acs.nanolett.5b05316
[34] Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). doi:  10.1038/nmat1967
[35] Dontschuk, N. et al. A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases. Nat. Commun. 6, 6563 (2015). doi:  10.1038/ncomms7563
[36] Dong, X. C., Shi, Y. M., Huang, W., Chen, P. & Li, L. J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649–1653 (2010). doi:  10.1002/adma.200903645
[37] Yu, R. W., Cox, J. D., Saavedra, J. R. M. & De Abajo, F. J. G. Analytical modeling of graphene plasmons. ACS Photonics 4, 3106–3114 (2017). doi:  10.1021/acsphotonics.7b00740
[38] Zhu, A. Y., Yi, F., Reed, J. C., Zhu, H. & Cubukcu, E. Optoelectromechanical multimodal biosensor with graphene active region. Nano. Lett. 14, 5641–5649 (2014). doi:  10.1021/nl502279c
[39] Yao, Y. et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano. Lett. 14, 6526–6532 (2014). doi:  10.1021/nl503104n
[40] Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4, 532–535 (2008). doi:  10.1038/nphys989
[41] Wu, X. et al. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem. Soc. Rev. 42, 8032–8048 (2013). doi:  10.1039/c3cs60148j
[42] Shoji, E. & Freund, M. S. Potentiometric saccharide detection based on the pKa changes of poly (aniline boronic acid). J. Am. Chem. Soc. 124, 12486–12493 (2002). doi:  10.1021/ja0267371
[43] Zhu, Y. B. et al. A graphene-based affinity nanosensor for detection of low-charge and low-molecular-weight molecules. Nanoscale 8, 5815–5819 (2016). doi:  10.1039/C5NR08866F
[44] Zhang, Y. et al. Capacitive sensing of glucose in electrolytes using graphene quantum capacitance varactors. ACS Appl. Mater. Inter 9, 38863–38869 (2017). doi:  10.1021/acsami.7b14864
[45] Moore, A. N. J. & Wayner, D. D. M. Redox switching of carbohydrate binding to ferrocene boronic acid. Can. J. Chem. 77, 681–686 (1999).
[46] Mesch, M., Zhang, C. J., Braun, P. V. & Giessen, H. Functionalized hydrogel on plasmonic nanoantennas for noninvasive glucose sensing. ACS Photonics 2, 475–480 (2015). doi:  10.1021/acsphotonics.5b00004
[47] Li, D. C. et al. Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer. Sens. Actuat B Chem. 213, 295–304 (2015). doi:  10.1016/j.snb.2015.02.039
[48] Yetisen, A. K. et al. Reusable, robust, and accurate laser-generated photonic nanosensor. Nano. Lett. 14, 3587–3593 (2014). doi:  10.1021/nl5012504
[49] Stephenson-Brown, A. et al. Glucose selective surface plasmon resonance-based bis-boronic acid sensor. Analyst 138, 7140–7145 (2013). doi:  10.1039/c3an01233f
[50] Azuelos, P. et al. Theoretical investigation of Vernier effect based sensors with hybrid porous silicon-polymer optical waveguides. J. Appl. Phys. 121, 144501 (2017). doi:  10.1063/1.4980010
[51] Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012). doi:  10.1038/nature11653
[52] Zhu, W. Q. & Crozier, K. B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nat. Commun. 5, 5528 (2014). doi:  10.1038/ncomms6528
[53] Sarkar, D. et al. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992–4003 (2014). doi:  10.1021/nn5009148
[54] Lee, G. H. et al. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano 9, 7019–7026 (2015). doi:  10.1021/acsnano.5b01341